Geometric neuro-fuzzy transfer learning for in-cylinder pressure modelling of a diesel engine fuelled with raw microalgae oil
Ji Li,
Dawei Wu,
Hassan Mohammadsami Attar and
Hongming Xu
Applied Energy, 2022, vol. 306, issue PA, No S0306261921013143
Abstract:
Bioenergy attracts more attention owing to the reduction of both air pollution and greenhouse gas emissions in a whole life cycle compared to fossil fuels. As a third-generation biofuel, Microalgae Oil (MAO) can utilise carbon dioxide and light energy at an increased photosynthetic efficiency compared to energy crops for biomass. Due to the wide variety of MAO and their blends with diesel in different ratios, characterization of these biofuels’ engine performance is difficult to be standardized, e.g., in-cylinder pressure. This paper proposes a novel approach of geometric neuro-fuzzy transfer learning (GNFTL) for in-cylinder pressure modelling of a diesel engine fuelled with MAO. Inspired by computational geometry, this approach only utilizes limited experimental data obtained by geometric screening to learn a high-precise transfer model of the in-cylinder pressure with different MAO blending ratios. Followed by the process of MAO extraction and test cell description, the proposed approach of GNFTL is presented which comprises geometric transfer domain segmentation and neuro-fuzzy transfer learning. By a comprehensive study, the results demonstrate that the proposed approach can achieve a competitive prediction accuracy whilst significantly reducing experimental efforts on used biofuel by 47.8% and operation time by 41.5%, compared to the conventional manual design of experiment.
Keywords: Black-box modelling; In-cylinder pressure; Neuro-fuzzy transfer learning; Microalgae oil; Experimental reduction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921013143
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013143
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118014
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().