EconPapers    
Economics at your fingertips  
 

Time series graphical lasso and sparse VAR estimation

Aramayis Dallakyan, Rakheon Kim and Mohsen Pourahmadi

Computational Statistics & Data Analysis, 2022, vol. 176, issue C

Abstract: A two-stage sparse vector autoregression method is proposed. It relies on the more recent and powerful technique of time series graphical lasso to estimate sparse inverse spectral density matrices in the first stage, and its second stage refines non-zero entries of the AR coefficient matrices using a false discovery rate (FDR) procedure. Compared to a recent approach, the method has the advantage of avoiding the inversion of the spectral density matrix, but has to deal with optimization over Hermitian matrices with complex-valued entries. Such modifications significantly improve the computational time with a little loss in forecasting performance. The algorithmic and computational properties of the method have been studied and the performance of the two methods is compared using simulated and a real macro-economic dataset. The simulation results show that the proposed modification is preferred over the existing method when the goal is to learn the structure of the AR coefficient matrices while the latter outperforms the former when forecasting is the ultimate task.

Keywords: Time series graphical models; Sparse vector autoregression; FDR (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947322001372
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001372

DOI: 10.1016/j.csda.2022.107557

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:176:y:2022:i:c:s0167947322001372