Abstract:
Factor analysis is a powerful tool to identify the common characteristics among a set of variables that are measured on a continuous scale. In the context of factor analysis for non-continuous-type data, most applications are restricted to item response data only. We extend the factor model to accommodate ranked data. The Monte Carlo expectation-maximization algorithm is used for parameter estimation at which the E-step is implemented via the Gibbs sampler. An analysis based on both complete and incomplete ranked data (e.g. rank the top "q" out of "k" items) is considered. Estimation of the factor scores is also discussed. The method proposed is applied to analyse a set of incomplete ranked data that were obtained from a survey that was carried out in GuangZhou, a major city in mainland China, to investigate the factors affecting people's attitude towards choosing jobs. Copyright 2005 Royal Statistical Society.

Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples

More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC. Series data maintained by Wiley-Blackwell Digital Licensing ().