EconPapers    
Economics at your fingertips  
 

Optimal combination forecasts for hierarchical time series

Rob J Hyndman (), Roman A. Ahmed, George Athanasopoulos () and Han Lin Shang ()

Computational Statistics & Data Analysis, 2011, vol. 55, issue 9, pages 2579-2589

Abstract: In many applications, there are multiple time series that are hierarchically organized and can be aggregated at several different levels in groups based on products, geography or some other features. We call these "hierarchical time series". They are commonly forecast using either a "bottom-up" or a "top-down" method. In this paper we propose a new approach to hierarchical forecasting which provides optimal forecasts that are better than forecasts produced by either a top-down or a bottom-up approach. Our method is based on independently forecasting all series at all levels of the hierarchy and then using a regression model to optimally combine and reconcile these forecasts. The resulting revised forecasts add up appropriately across the hierarchy, are unbiased and have minimum variance amongst all combination forecasts under some simple assumptions. We show in a simulation study that our method performs well compared to the top-down approach and the bottom-up method. We demonstrate our proposed method by forecasting Australian tourism demand where the data are disaggregated by purpose of travel and geographical region.

Keywords: Bottom-up; forecasting; Combining; forecasts; GLS; regression; Hierarchical; forecasting; Reconciling; forecasts; Top-down; forecasting (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (5) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311000971
Full text for ScienceDirect subscribers only.

Related works:
Working Paper: Optimal combination forecasts for hierarchical time series (2007) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:9:p:2579-2589

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by Azen S.P.

More articles in Computational Statistics & Data Analysis from Elsevier
Series data maintained by Zhang, Lei ().

 
Page updated 2014-12-15
Handle: RePEc:eee:csdana:v:55:y:2011:i:9:p:2579-2589