EconPapers    
Economics at your fingertips  
 

Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach

Bertrand Maillet, Sessi Tokpavi () and Benoit Vaucher

European Journal of Operational Research, 2015, vol. 244, issue 1, 289-299

Abstract: The global minimum variance portfolio computed using the sample covariance matrix is known to be negatively affected by parameter uncertainty, an important component of model risk. Using a robust approach, we introduce a portfolio rule for investors who wish to invest in the global minimum variance portfolio due to its strong historical track record, but seek a rule that is robust to parameter uncertainty. Our robust portfolio corresponds theoretically to the global minimum variance portfolio in the worst-case scenario, with respect to a set of plausible alternative estimators of the covariance matrix, in the neighbourhood of the sample covariance matrix. Hence, it provides protection against errors in the reference sample covariance matrix. Monte Carlo simulations illustrate the dominance of the robust portfolio over its non-robust counterpart, in terms of portfolio stability, variance and risk-adjusted returns. Empirically, we compare the out-of-sample performance of the robust portfolio to various competing minimum variance portfolio rules in the literature. We observe that the robust portfolio often has lower turnover and variance and higher Sharpe ratios than the competing minimum variance portfolios.

Keywords: Global minimum variance portfolio; Model risk; Parameter uncertainty; Robust least squares; Robust portfolio (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221715000302
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach (2015)
Working Paper: Global Minimum Variance Portfolio Optimisation Under some Model Risk: A Robust Regression-based Approach (2015)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:eee:ejores:v:244:y:2015:i:1:p:289-299

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Series data maintained by Dana Niculescu ().

 
Page updated 2017-06-13
Handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:289-299