# Finitized conformal spectrum of the Ising model on the cylinder and torus

*O'Brien, David L.*,
*Paul A. Pearce* and
*S. Ole Warnaar*

*Physica A: Statistical Mechanics and its Applications*, 1996, vol. 228, issue 1, pages 63-77

**Abstract:**
The spectrum of the critical Ising model on a lattice with cylindrical and toroidal boundary conditions is calculated by commuting transfer matrix methods. Using a simple truncation procedure, we obtain the natural finitizations of the conformal spectra recently proposed by Melzer. These finitizations imply polynomial identities which in the large lattice limit give rise to the Rogers—Ramanujan identities for the c = 12 Virasoro characters.

**Date:** 1996

**References:** View complete reference list from CitEc

**Citations** View citations in EconPapers (1) Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0378437196000556

Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** http://EconPapers.repec.org/RePEc:eee:phsmap:v:228:y:1996:i:1:p:63-77

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by *K. A. Dawson*, *J. O. Indekeu*, *H.E. Stanley* and *C. Tsallis*

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier

Series data maintained by Zhang, Lei ().