# On the dual problem of utility maximization in incomplete markets

*Lingqi Gu*,
*Yiqing Lin* and
*Junjian Yang*

*Stochastic Processes and their Applications*, 2016, vol. 126, issue 4, pages 1019-1035

**Abstract:**
In this paper, we study the dual problem of the expected utility maximization in incomplete markets with bounded random endowment. We start with the problem formulated in Cvitanić et al. (2001) and prove the following statement: in the Brownian framework, the countably additive part Q̂r of the dual optimizer Q̂∈(L∞)∗ obtained in Cvitanić et al. (2001) can be represented by the terminal value of a supermartingale deflator Y defined in Kramkov and Schachermayer (1999), which is a local martingale.

**Keywords:** Utility maximization; Random endowment; Primal–dual approach; Dual optimizer (search for similar items in EconPapers)

**Date:** 2016

**References:** View references in EconPapers View complete reference list from CitEc

**Citations** Track citations by RSS feed

**Downloads:** (external link)

http://www.sciencedirect.com/science/article/pii/S0304414915002574

Full text for ScienceDirect subscribers only

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** http://EconPapers.repec.org/RePEc:eee:spapps:v:126:y:2016:i:4:p:1019-1035

**Ordering information:** This journal article can be ordered from

http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional

https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Stochastic Processes and their Applications is currently edited by *T. Mikosch*

More articles in Stochastic Processes and their Applications from Elsevier

Series data maintained by Dana Niculescu ().