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Abstract

This paper examines the asymptotic properties of the popular within,
GLS estimators and the Hausman test for panel data models with both
large numbers of cross-section (N) and time-series (T) observations. The
model we consider includes the regressors with deterministic trends in
mean as well as time invariant regressors. If a time-varying regressor
is correlated with time invariant regressors, the time series of the time-
varying regressor is not ergodic. Our asymptotic results are obtained con-
sidering the dependence of such non-ergodic time-varying regressors. We
find that the within estimator is as efficient as the GLS estimator. Despite
this asymptotic equivalence, however, the Hausman statistic, which is es-
sentially a distance measure between the two estimators, is well defined
and asymptotically x?-distributed under the random effects assumption.
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1 Introduction

Panel data refers to the data with repeated time-series observations (T') for
a large number (N) of cross-sectional units (e.g., individuals, households, or
firms). An important advantage of using these data is that they allow re-
searchers to control for unobservable heterogeneity, that is, systematic differ-
ences across cross-sectional units (e.g., individuals, households, firms, coun-
tries). Error-components models have been widely used to control for these
individual differences. These models assume that stochastic error terms have
two components: an unobservable time-invariant individual effect which cap-
tures the unobservable individual heterogeneity and the usual random noise.
The most popular estimation methods for panel data models are the within and
the generalized least squares (GLS) estimators. For the panel data with large
N and small T, the appropriate choice of estimators depends on whether or not
regressors are correlated with the unobservable individual effect. An important
advantage of using the within estimator (least squares on data transformed into
deviations from individual means) is that it is consistent even if regressors are
correlated with the individual effect. However, a serious defect of the estimator
is its inability to estimate the impact of time-invariant regressors.! The GLS
estimator is often used in the literature as a treatment of this problem, but it
is not without its own defect: The consistency of the GLS crucially depends
on a strong assumption that no regressor is correlated with the effect (random
effects assumption). Use of the estimator thus requires a statistical test that
can empirically validate this strong assumption. A Hausman statistic (1978) is
commonly used for this purpose (e.g., Hausman and Taylor, 1981; Cornwell and
Rupert, 1988; or Baltagi and Khanti-Akom, 1990).

In this paper, we study the asymptotic properties of the within, GLS esti-
mators and the Hausman statistic for a general error-components model with
both large numbers of cross-section and time-series observations. The GLS esti-
mator has been known to be asymptotically equivalent to the within estimator
for the cases with infinite N and T (see, for example, Hsiao, Chapter 3, 1986;
Métyds and Sevestre, Chapter 4, 1992; and Baltagi, Chapter 2, 1995). This
asymptotic equivalence result has been obtained using a naive sequential limit
method (7" — oo followed by N — c0) and some strong assumptions such as
fixed regressors. This result naturally raises a couple of questions regarding the
asymptotic properties of the Hausman test. Firstly, the Hausman statistic could
be viewed as a distance measure between the within and GLS estimators. Then,
does the equivalence result indicate that the Hausman statistic should have a
degenerating or nonstandard asymptotic distribution under the random effects
assumption? Secondly, does the equivalence result also imply that the Haus-

1Estimation of the effect of a certain time invariant variable on a dependent variable
could be an important task in a broad range of empirical research. Examples would be the
labor studies about the effects of schooling or gender on individual workers’ earnings, and
the macroeconomic studies about the effect of a country’s geographic location (e.g., whether
the country is located in Europe or Asia) on its economic growth. The within estimator is
inappropriate for such studies.



man test would have low power to detect any violation of the random effects
assumption when 7' is large? This paper is concerned to answer these questions.

The analysis of panel data with both large N and T becomes increasingly
important in the literature. While a variety of estimation and model specifica-
tion testing techniques have been introduced and proposed in the panel data
literature, most of these methods are limited to the analysis of data with large
N and small T. An obvious reason for this limited approach is that most of
the available panel data have only a short history. However, panel data with a
large number of time-series observations have been increasingly more available
in recent years in many economic fields such as international finance, finance, in-
dustrial organization, and economic growth. Furthermore, popular panel data,
such as the Panel Study of Income Dynamics (PSID) and the National Longitu-
dinal Surveys (NLS), contain increasingly more time-series observations as they
are updated regularly over the years. Consistent with this trend, some recent
studies have examined the large-N and large-T properties of the within and
GLS estimators for error-component models.? For example, Phillips and Moon
(1999) and Kao (1999) establish the asymptotic normality of the within estima-
tor for the cases in which regressors follow unit root processes. Extending these
studies, Choi (1998) considers a general random effects model which contains
both unit-root and covariance-stationary regressors. For this model, he derives
the asymptotic distributions of both the within and GLS estimators. These
papers however do not consider the asymptotic properties of the Hausman test.

The general model we consider in this paper is different from the models
considered by these studies in two ways. First, our model contains the time-
varying regressors that are serially dependent and heteroskedastic over time with
or without time trends. These variables could be cross-sectionally heteroskedas-
tic or homogeneous. Second, our model contains time invariant regressors that
are correlated or uncorrelated with other time-varying regressors. If a time-
varying regressor is correlated with time-invariant regressors, the time series
of it is non-ergodic because the influence of the time invariant random regres-
sors is persistent in all time periods.> However, under the assumption that such
time-varying regressors satisfy mixing properties conditionally on time invariant
random regressors, we can derive the limiting distributions of various forms of
sample averages of panel data when both N, T'— oco. These intermediate results
are used to establish the asymptotic distributions of the panel data estimators
and the Hausman test.

Most of the asymptotic results derived in the paper hold as N,T — oo
without any particular sequence. In addition, we do not make any assumption

2Some other studies have considered different panel data models with large N and large
T. For example, Levin and Lin (1992, 1993), Quah (1994), Pesaran, Shin and Im (1997),
and Higgin and Zakrajsék (1999) develop unit-root tests for data with large N and large T'.
Alvarez and Arellano (1998) and Hahn and Kuersteiner (2000) examine the large-N and large-
T properties of generalized method of moments (GMM) and within estimators for stationary
dynamic panel data models.

3The time series of the panel data considered in Phillips and Moon (1999) is also non-
ergodic. However, in their paper the non-ergodicity arises due to stochastic trends generated
by unit root processes.



about the relative sizes of IV and T. Previous studies of nonstationary panel
data typically assume that T is relatively greater than IN. Differently from these
studies, our approximation theories can apply to any panel data set with large
N and large T regardless of their asymptotic ratio.

The main findings of this paper are as follows. Consistent with the pre-
vious studies, we find that the within and GLS estimators (of coefficients on
time-varying regressors) are asymptotically equivalent. Nonetheless, the Haus-
man statistic is asymptotically y2-distributed under the random effects assump-
tion. This seemingly contradictive result can be explained by our finding that
the differences between the within and GLS estimators converge in probabil-
ity to zeros much faster than the two estimators converge in probability to
the true values of coefficients (at the same speed). For example, for a sim-
ple model with a no-trend time-varying regressor, we find that the within and
GLS estimators (of the coefficient on the only time-varying regressor) are both
V' NT—consistent and asymptotically normal. In addition, the two estimators
are \/W —equivalent in the sense that the difference between the two estima-
tors is 0,(1/v/NT). However, we also find that the difference is O,(1/v NT?)
or O,(1/vV NT?) depending on whether data are cross-sectionally heteroskedas-
tic or homoskedastic. This implies that the within and GLS estimators are not
equivalent in the orders of vV NT? or v NT3. Furthermore, it is shown that un-
der the random effects assumption, the differences between the within and GLS
estimators are asymptotically normally distributed. From this, we show that
the Hausman test statistic is asymptotically y2?-distributed. In addition, our
analysis under a series of local alternative assumptions indicates that the Haus-
man test retains power to detect violations of the random effects assumption
even if T — oo.

This paper is organized as follows. Section 2 introduces the panel model of
interest here, and defines the within, GLS estimators and the Hausman test.
For several simple illustrative models, we derive the asymptotic distributions
of the within estimators, the GLS estimators, and the Hausman test statistic.
We show that the convergence rates of the estimators and the Hausman test
statistic are sensitive to the unknown data generating structure. Section 3
defines a conditional a-mixing coefficient. Using this, we propose a conditional
a—mixing process and discuss its properties. In Section 4, we provide our general
asymptotic results. Concluding remarks follow in section 5. All the technical
derivations and proofs are presented in the Appendix.

2 Preliminaries

2.1 Estimation and Specification Test
The model under discussion here is given:

Yir = B'ie + 7' 2i + C+ e = 8wir + C + iy €t = wi + Vi, (1)

where ¢ = 1,..., N denotes cross-sectional (individual) observations, t = 1,...,



T denotes time, w;; = (xit,zi)/, and § = (8,7')". In model (1), z; is a k x 1
vector of time-varying regressors, z; is a g X 1 vector of time-invariant regres-
sors, ( is an overall intercept term, and the error €;; contains a time-invariant
individual effect u; and random noise v;;. We consider the case of both large
numbers of individual and time series observations, so asymptotic properties of
the estimators and statistics for model (1) apply as N,T — oo. The orders
of convergence rates of some estimators depend on whether or not the model
contains an overall intercept term. This problem will be addressed later.

We assume that data are distributed independently (but not necessarily
identically) across different i, and that the v;; are independently and identically
distributed (i.i.d.) with var(v;;) = o2. We further assume that w;, @;1, ..., z;7
and z; are strictly exogenous with respect to v;; that is,

E(vit | i, @41, ..., 1) = 0,

for any i and t. This assumption rules out the cases in which the set of regres-
sors includes lagged dependent variables or predetermined regressors. Detailed
assumptions about the regressors x;1, ..., T;1, 2; will be introduced later.

For convenience, we adopt the following notational rule: For any p x 1 vector
a;s, we denote a@; = % Do @ity Qg = Qg — @33 @ = % > ;@i a; = a; —a. Thus,
for example, for w;; = (v, 2]), we have @W; = (T}, 2)); Wy = (T%y,01x4);
w=(T,2);w; = (T — =),z —2)).

When the regressors are correlated with the individual effect, both of the
OLS and GLS estimators of ¢ are biased and inconsistent. This problem has
been traditionally addressed by the use of the within estimator (OLS on data
transformed into deviations from individual means):

~ Y o
Buw = (Zzt TitTy) Ziﬁ, TitYiy-
Under our assumptions, the variance-covariance matrix of the within estimator
is given: N
Var(8,) = o2(3; , Tuli) (2)
Although the within method provides a consistent estimate of 3, a serious
defect is its inability to identify -, the impact of time-invariant regressors. A
popular treatment of this problem is the random effects (RE) assumption under
which the u; are random and uncorrelated with the regressors:

E(u; | zix, ..., wir, 2i) = 0. (3)

Under this assumption, all of the parameters in model (1) can be consistently
estimated. For example, a simple but consistent estimator is the between esti-
mator (OLS on data transformed into individual means):

o~ o~/ — _ —

& = (B, 7)) = (X 0i}) ™ X2, Wil
However, as Balestra and Nerlove (1966) suggest, under the RE assumption,
an efficient estimator is the GLS estimator of the following form:

o~

by = [Zi,t(i[]it + Orw;) (Wi + GT@i)’]’l Zu(@z‘t + 07w;)(Yit + 01Y:)
= [Zzt @iti”v;t + T@% Zi ai@i/]71[2i7t Witli + TH?F 27, w;ys),



where 07 = /02 /(To2 4 02). The variance-covariance matrix of this estimator
is given: R
V(IT((SQ) = 0121 [Zi,t {Eitw;t + TH% Zi ’wﬂfbi/]il. (4)

2

2 and o2 are known, while in

For notational convenience, we assume that o
practice they must be estimated.*

An important advantage of the GLS estimator over the within estimator is
that it allows researchers to estimate v. In addition, the GLS estimator of 3
is more efficient than the within estimator of 3, because [Var(3,,) — Var(8,)]
is positive definite so long as 07 > 0.5 Despite these desirable properties, it is
important to notice that the consistency of the GLS estimator crucially depends
on the RE assumption (3). Accordingly, the legitimacy of the RE assumption
should be tested to justify the use of GLS. In the literature, a Hausman test
(1978) has been widely used for this purpose. The statistic used for this test is

a distance measure between the within and GLS estimators of 3:
7_L/\/l]\fT = (Bw - EQ)I[VG“T(BUJ) - Va/r(gg)]_l(ﬁw - gg) (5)

For the cases in which T is fixed and N — oo, the RE assumption warrants that
the Hausman statistic HM y7 is asymptotically y2-distributed with degrees of
freedom equal to k. This result is a direct outcome of the fact that for fixed T,
the GLS estimator 3, is asymptotically more efficient than the within estimator

ﬁw, and that the difference between the two estimators is asymptotically normal;
specifically, as N — oo,

VNT(B,, — B,) = N(0,plimy o NT[Var(3,,) — Var(B,)), (6)

where “=—-" means “converges in distribution.”

An important condition that guarantees (6) is that 67 > 0. If 67 = 0, then
the within and GLS estimators become identical and the Hausman statistic is
not defined. Observe now that 7 — 0 as T' — oco. This observation naturally
raises several issues related with the asymptotic properties of the Hausman test
as T — oo. In order to clarify the nature of the problem, consider model (1),
but without the time-invariant regressors and the overall intercept term (().
Assume that x;; contains a single time-varying regressor which is independently
and identically distributed over different 7 and ¢. For this simple model, we
can easily show plimy r—.oNTVar(8,,) = plimy 1. NTVar(3,), using the
fact that 07 — 0 as T — oo. This asymptotic equality immediately implies
that the within and GLS estimators of 3 are asymptotically equivalent; that
is, plimMTHOO\/W(ﬁw - ﬁq) = Opx1. This preliminary finding raises several
questions. First, does this equivalence result hold for the general cases with

4The conventional estimates are given:

G5 = Yo @it = FitB)?/IN(T = 1)};5% = 2,5 — @:8)* /N — 53 /T.

5This efficiency gain of course results from the fact that the GLS estimator utilizes between
variations in ;.



time-varying regressors with arbitrary autocovariance structure? Second, what
is the asymptotic distribution of the Hausman statistic when N,T — oo? Is
the statistic HM yr x2-distributed despite the equivalence result? Third, does
the Hausman test have power to detect violations of the RE assumption when
T is large? Our equivalence result implies that between variations in data
become less informative for the GLS estimation of 8 as T' — oo. Then, the GLS
estimator of § may remain consistent even if the RE assumption is violated. If
this is the case, the power of the Hausman test might be inversely related to the
size of T. We will attempt to answer these questions in the following sections.

What makes it complex to investigate the asymptotic properties of the
within, GLS estimators and the Hausman statistic is that their convergence
rates crucially depend on data generating processes. The following subsection
considers several simple cases to illustrate this point.

2.2 Preliminary Results

This section considers several simple examples demonstrating that the con-
vergence rates of the within, GLS estimators and the Hausman statistic cru-
cially depend on whether or not data are cross-sectionally heteroskedastic, and
whether or not time-varying regressors contain time trends. For model (1), we
can easily show that

B, — B = Ayrant; (7)
By — B = (Byr — OntHy' Chp) " onr — CnrHy'enrl, ©)
where,
ANT = 30, BTy By = 30, 3% Ony = 32, %2 Hy = Y, 2375

anT =D ¢ TtVies bvr = 32 Ti(ui +05);ent = 32, Zi(ui + ;).

Using (7) and (8), we can also show that the GLS estimator is a convex combi-
nation of the within and between estimators:

By—8 = [Anr+T07(Byr — CxrHy' Cyr)] ™! (9)
< [ANT (B, — B) + TOR(Bnr — CnrHy Cy) (B, — B)).

Using (7), (8) and (9), we can also obtain

~ ~

Bw—By = [Ant+T07(Byr — CnrHy' Crr)] ™!
xT03(Byt — CnrHy Chp)[(By — B) — (B, — A (10)

Var(B,) — Var(B,) = ANy — [Ant + T03(Byr — Onr Hy ' Chyp)] 7L (11)

Equation (10) provides some insight into the convergence rate of the Hausman
test statistic. Note that (3,,—03,) depends on both (3,,—f) and (8,— (). Appar-

ently, the between estimator Eb exploits only N between-individual variations,



while the within estimator ﬁw is computed based on N (T —1) within-individual
variations. Accordingly, (Bb — () converges to a zero vector in probability much
slower than (@w — ) does. Thus, we can conjecture that the convergence rate
of (Bw — Bg) will depend on that of (Bb — 3), not (Bw — ). Indeed, we below
justify this conjecture.

In this subsection, we only consider a simple model which has a single time-
varying regressor (x;;) and a single time-invariant regressor (z;). Accordingly,
all of the terms defined in (7)-(11) are scalars. We consider asymptotics under
the RE assumption (3). To save space, this section only considers the estimators
of § and the Hausman test. The asymptotic distributions of the estimators of
~v will be discussed in Section 4. Throughout the examples below, we assume
that the z; are i.i.d. over different i with N(0,02). In addition, we introduce
a notation e;; to denote a white noise component in the time-varying regressor
xir. We assume that the e;; are i.i.d. over different i and ¢ with N(0,02), and
are uncorrelated with the z;.

CASE 1: We here consider a case in which the time-varying regressor x;;
contains a time trend of order m. Specifically, we assume:

Tit = @Litm + €it. (12)

We assume the parameters ©;,; are fixed with finite limNHoo% 301, =
limy—0©1 = p1,1 and limNHm% Zl @%’i = p1,2. We can allow them to be
random without changing our results, but at the cost of analytical complexity.®
We consider two possible cases: one in which the parameters ©;; are hetero-
geneous, and the other in which they are constant over different individuals.
Allowing the ©;; to be different across different individuals, we allow the z;
be cross-sectionally heteroskedastic. In contrast, if the ©;; are constant over
different i, the x;; become cross-sectionally homogeneous. As we show below,
the convergence rates of the between estimator and Hausman test statistic are
different in the two cases. Furthermore, whether or not the model is estimated
with an overall intercept could matter for convergence rates.

To be more specific, consider the three terms By7, Cn7, and by defined
below (8). A straightforward algebra reveals that with r, =¢/T,

Byr = S0 -8 P Ex)
2TO1:-8) ("1 oot 6 - )+ (e - o

Cnr =>,(01,i — 61) (Tm% o TZ”) (Zi —2)+>. (€ —€)(zi — Z);

SWe can consider a more general case: for example, z;; = a;t™ + ©; + O + b;z; + ejr.
However, the same asymptotic results apply to this general model. This is so because the
trend term (¢") dominates asymptotics.



bvr = Y.(01—B) (Tml 5, r;n) s+ 3, — P
X 01 B1) (T L Tt )+ e -

From these three equations, it is obvious that the terms including 7™ will be
the dominant factors determining the asymptotic properties of By, Cn7, and
byt. However, if the parameters ©; ; are constant over different individuals so
that ©1 ; —©; =0, none of Byr, Cnr, and by depends on T™. For this case,
the asymptotic properties of the three terms depend on (e; — €). This result
indicates that the asymptotic distribution of the between estimator Bb, which is
a function of Byr, Cnr, and by, will depend on whether the parameters ©4 ;
are cross-sectionally heteroskedastic or homoskedastic. Somewhat interestingly,
however, the distinction between these two cases becomes unimportant when
the model has no intercept term (¢ = 0) and is estimated with this restriction.
For such a case, By, Cn7T and byt depend on T; instead of z;. With T;, the
terms (©1,; — ©1) and (g; — €) in Byr, Cn7, and byt are replaced by O ;
and €;, respectively. Then, it is clear that the trend term 7™ remains as a
dominating factor whether or not the ©; ; are heterogenous.

We now consider the asymptotic distributions of the within, between, GLS
estimators and the Hausman statistic under the two alternative assumptions
about the parameters O ;.

CASE 1.1: Assume that the parameters ©; ; are heterogeneous over differ-
ent individuals; that is, py 2 — p%l = 0. For this case, we can easily show:

. L, .
pllmN,T—meﬁ NT = D1,2q1;
lim 1 lB P12~ P%J.
lim LlC’ = 0
PUUMN,T—o00 Tm NCONT =5
. 1
plszHooNHN = Uga
where ¢ = limp_.co 3, [(t/T)™ — (/T fo —1/(m+ 1))%dr.”

The first two equalities are obtained using the fact that lzmTHooT Yo /mm
= fol r™dr = 1/(m + 1). In addition, we can also show that as (N, T — c0),

11
" /NT

1 1 —p3
bNT == N (O 2p—172 p171> 4

ant = N(0,p12q102);

™ JN “(m+ 1)2

"We can obtain these results using the fact that under given assumptions, ﬁ > ieit and

% > . vit are i.i.d. over different i with N (0, 02) and N(0,02), respectively, for any T.



1
——CNT — N(0,0§JZ)~

VN

Using these results and the fact that limNHOOTH% = 02/02, we can show that
as (N, T — o),

T VNT(, - 5) = N (0 i ) (13

7 P1,2q1

T"VN(@B, - 8) = N (&ﬁM) ; (14)

2
P12 —DP11

T"VNT(B, - B) = T"VNT(B, - P)
1 O'% (p1,2 _p%,l) m 3

+0p(1/ﬁ)§ (15)

o2 (p12—pi,) R
— oy S TN (B, — 8) + 0p(1
02 p12q1(m +1)2 (B, — B) + 0p(1)

4 2
— N(Oﬂ (12— p1) ); (16)

% (praa)(m+ 17

T NTQ(B’LU _E‘q)

U_ﬁ (P1,2 —Pil)
02 (pr2q1)?(m +1)%

Several remarks follow. First, not surprisingly, all of the within, between and
GLS estimators are superconsistent when the time-varying regressor z;; contains
a time trend. Second, from (15), we can see that the two estimators 3, and B,
are T/ NT —equivalent in the sense that (Bw — Eg) is 0,(1/T™\/NT). This is
so because the second term in the right-hand side of (15) is O, (1/+/T). Nonethe-
less, from (16), we can see that (Bw fﬁg) is Op(1/T™+/ NT?) and asymptotically
normal. These results indicate that the within and GLS estimators are equiva-
lent to each other by the order of T"+/NT, but not by the order of T/ NT2.
Third, from (16) and (17), we can see that the Hausman statistic is asymptoti-
cally y2—distributed. Fourth, when the model is estimated without an intercept
term because ¢ = 0, all of the results (14)-(17) are still valid with p; » replacing

(P12 = pia)-
Finally, (16) provides some intuition about the power property of the Haus-

plimN,TﬁooNTQm+2[Var(Bw) - V(IT(BQ)] = (17)

man test. Observe that the asymptotic distribution of (ﬁw — 39) depends on
that of (8, — ). From this, we can conjecture that the Hausman statistic is for

testing consistency of the between estimator 3, not exactly for testing the RE
assumption. In fact, the RE assumption (3) is not a necessary condition for the

asymptotic unbiasedness of (. For example, if the effect is correlated with z;,

10



but not with x;, ﬁb could be asymptotically unbiased, as we find in section 4.8
Thus, the Hausman test does not have power to detect the violations of the RE
assumption in the direction in which 3, remains asymptotically unbiased. This
issue will be further explored later.

CASE 1.2: We now assume that ©; ; = ©; for all ¢; that is, p; o —pil =0.
As we have discussed above, the terms By7, Cnr, and by do not deperid
on T™. Furthermore, the asymptotic distribution of the between estimator 3,
depends on the e;; instead of the ©1 ;. Specifically, we can easily show that

T
plszT—n)oNB = o2

. VT
Plimy 17— 00— N Cynr = 0

while other asymptotics are essentially the same as those obtained for CASE
1.1. The asymptotic distributions of the within and GLS estimators are the
same under both CASE 1.1 and CASE 1.2, but those of the between and the
Hausman statistic are different. For CASE 1.2,

N ~ o2
FG-0 =N (0.%): (15)
TVNTI (B, <B) = ~LBZe (B, 8) + o)
wo Pl 0202q VTV Op
olo?
= V(05i): "
. - 4 2
plim 1o NT" ¥ [Var(B,) = Var(B,)] = 535 (20)
1qio?

Several comments follow. First, the between estimator is no longer supercon-
sistent if the time trend in x;; is common to every individual (i.e., the parameters
©1,; are the same for 7). An interesting result is obtained when N/T — ¢ < 0.
For this case, the between estimator is inconsistent, although it is still asymp-
totically unbiased. This implies that the between estimator is an inconsistent
estimator for the analysis of cross-sectionally homogeneous panel data unless
N is substantially larger than 7. Second, the convergence rate of (3, — 3,)
is quite dlfferent between CASE 1.1 and 1.2. Notice that the convergence rate
of (3, — B,) is VNT4m+3 for CASE 1.2, while it is vV NT?m+2 for CASE 1.1.

8In contrast, the between estimator of -, 74, is inconsistent whenever the RE assumption
is violated.
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Thus, (ﬁ ﬁ ) converges in probability to zero much faster in CASE 1.2 than in
CASE 1.1. Nonethelebs the Hausman statistic is asymptotically y2-distributed
in both cases.

CASE 2: We now consider two simple examples in which the time-varying
regressor x;; is stationary without trend. Assume:

Tit = Og; + Vo r + €44, (21)
where G2 ; and Wy, ; are fixed individual-specific and time-specific effects, re-
spectively. Define

D21 = llmN—»oo P @2up22—llm1v—»oo > 03

q2,1 = lzmT—M)O Zt \IJQ 42,2 = lzmT—m)o Zt \Ilg RE

Notice that if the ©2; are allowed to vary across different i, the x;; become
cross-sectionally heteroskedastic. Similarly to CASE 1, we will demonstrate
that the convergence rates of the between estimator and the Hausman statistic
depend on whether the x;; is cross-sectionally heteroskedastic or homogeneous.

CASE 2.1: Assume that the O2 ; vary across different ¢; that is, p2 1 —p§’2 =+
0. With this assumption, we can easily show:

1

plimN7T~>ooﬁANT = Qoo — o1+ O
. 1
plsz,TﬂooNBNT = P22 —Diii
. 1
pllmN’T*)ooNCNT = 0
. 1
plszHooNHN = Ug;

1

aNny = N(OU(Q22—QQ1+U))

byt = N(OU (p2,2 — p§,1));

-5-3

—cNT = N(0,0202).

VN

With these results, we can show

W@w—m:zv(a % >; (22)

(@22 — q%,l +02)

VN(@B, - B) = N (0, %) ; (23)

(P2,2 -
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VNT(B,-p8) = VNT(B, - B)
102 (p22—p34)
VT 02 (q2,0 — Q§,1 +02)

+op (%) ; (24)

— p2 ~
VTG, -5, - -S PP NG g o,

02 (q2.2 — G5, +02)

VNG, - B)

4 M2
= N O,U_g (P2, _ p2,1)2 - (25)
05 (@22 — ¢35, +02)
—~ o 4 _ M2
plimn 7 NT?[Var(B,,) — Var(8,)] = 22 (P22 ~ P2.1) (26)

02 (q22 — @31 +02)%

Note that (22) - (26) are essentially the same as (13) - (17) except that they do
not include the time trend 7.

CASE 2.2: Now, we consider the case in which the ©,; are constant over
different ¢; that is, pao — p%yl = 0. If the model contains no intercept term
(¢ =0) and it is estimated with this restriction, all of the results (22) - (26) are
still valid with ps o replacing (p22 — p%l). However, if the model contains an
intercept term, the assumption of cross-sectional homoskedasticity affects the
convergence rates of the between estimator and the Hausman statistic, while
it does not to the within and GLS estimators. To see this, we assume that
©,; = 0, for all 4, without loss of generality. Then, we can show

R 2
%(ﬁb—@:N(O,%); (27)

TG, -B) = Gt (XG5 000

p
0% (q22,2 — @31 + 02

4 2

o o
— N|0,— = ; 28
( oy (Q22,2Q%2,1+U§)2> (28)

4 .2
0,0¢

02 (qa2,2 — qu,l +02)

plimyn,r—oNT3[Var(3,) — Var(B,)] = (29)

27

as (N,T — o0). Observe that the between estimator is \/%—Consistent as in
CASE 1.2.

CASE 3: So far, we have considered the cases in which the time-varying
regressor ;; and the time invariant regressor z; are uncorrelated. We now

13



examine the cases in which this assumption is relaxed. The degree of the cor-
relation between the x;; and z; may vary over time. As we demonstrate below,
the asymptotic properties of the panel data estimators and the Hausman test
statistic depend on how the correlation varies over time. The basic model we
consider here is given by

T = O3, + Vg + 1Lz [t + €4y, (30)

where the O3 ; and II; are individual-specific fixed parameters, the U3, are
the time-specific fixed effects, m is a non-negative real number. Observe that
because of the presence of the ©3; and II;, the 2 are not i.i.d. over different
i. The correlation between z;; and z; decreases over time if m > 0. In contrast,
m = 0 implies that the correlation remains constant over time. We will not
report our detailed asymptotic results for model (30) with heterogeneous O3 ;,
because they are essentially the same as those we obtain for CASE 2.1. This is
so because the terms O3, dominate and the terms II;z; /"™ become irrelevant
in asymptotics. Thus, we set O3 ; = 0 for all ¢. In addition, we set W3, = 0 for
all t. We do so because presence of the time effects is irrelevant for convergence
rates of panel data estimators and the Hausman statistic. For CASE 3, the
within and GLS estimators are always v/ NT —consistent regardless of the size
of m. Thus, we only report the asymptotic results for the between estimator
and the Hausman statistic.

For the cases in which the parameters II; are the same for all i, it is easy
to show that the between estimator (3, does not depend on II;z; /t"™. For such
cases, the terms II;z;/t™ do not play any important role in asymptotics. In
fact, when the parameters II; are the same for all i, we obtain exactly the same
asymptotic results as those for CASE 2.2. This result is due to the fact that
the individual mean of the time-varying regressor T; becomes a linear function
of the time invariant regressor z; if the II; are the same for all 7. This particular
case does not seem to be of practical importance, because it assumes an overly
restrictive covariance structure of regressors. Thus we only consider the cases
in which the IT; are heterogeneous over different 3.

We examine three possible cases: m € (%, oo, m = %, and m € [0, %) We
do so because, depending on the size of m, one (or both) of the two terms e;;
and II;z; /t™ in x;; becomes a dominating factor in determining the convergence

rates of the between estimator Bb and the Hausman statistic HM .

CASE 3.1: Assume that m € (%, oo]. This is the case where the correlation
between x;; and z; fades away quickly over time. Thus, one could expect that
the correlation between z;; and z; (through the term II;z; /t™) would not play
any important role in asymptotics. Indeed, a straightforward algebra, which
is not reported here, justifies this conjecture: The term e; in x; dominates
I1;2; /t™ asymptotics, and thus, this is essentially the same case as CASE 2.2.9

9We can obtain this result using the fact that limTﬂwﬁ YtTm=0,if m> %
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CASE 3.2: We now assume m = 1/2. For this case, define

P31 = lsz_m Yo lisps 2 = llmN—»oo Zi 117,
and q3 = limTﬂooT%m fol r~"Mdr = ﬁ for m < % With this notation, a
little algebra shows that as (N, T — o0),

2
Oy

(P32 —p3,1)a50% + U?) '

(B, —8) =N <Oa

Observe that the asymptotic variance of the between estimator Bb depends on
both the terms o2 and (ps 2 —p%l)q%ag. That is, both the terms e;; and II;z; /t™
in x;; are important in the asymptotics of the between estimator Eb. This implies
that the correlation between the x;; and z;, when it decreases reasonably slowly
over time, matters for the asymptotlc distribution of the between estimator 61,
Nonetheless, the convergence rate of ﬁb is the same as that of ﬂb for CASEs 2.2
and 3.1. We can also show

~ ~ 2 (p3 o — 02 )g202 + o2 ~
VET@, -8, = -Zl2raaac.t e\@(ﬂbﬂwopm

2
u Oc

2 2 2 2
(o)
g
U e
4 ( 2 2 2 2
) - - ol (p32 —p31)az0; +o
plsz,TﬂooNTS[Var(ﬁw) - Va’r(ﬁg)] = CT_;} ol - 67
u e

both of which imply that the Hausman statistic is asymptotically x?—distributed.

CASE 3.3: Finally, we consider the case in which m € [0, 2), where the
correlation between x;; and z; decays over time slowly. Note that the correlation
remains constant over time if m = 0. We can show

N ~ o2
Vo (By - B) = N[0, — T2 .
7o (P = B) ( (3,2 — ng)‘ﬁ”?)

Observe that the asymptotic distribution of Bb no longer depends on 2. This
implies that the term e;; in x;; dominates II;z;/t™ in the asymptotics for ﬁb.
Furthermore, the convergency rate of Bb now depend on m. Specifically, so long
asm < %, the convergence rate increases as m decreases. In particular, when
the correlation between x;; and z; remains constant over time (m = 0), the
between estimator Bb is v/ N—consistent as in CASE 2.1. This is so because,
in this case, the term II;z; takes the role of the ©; term in CASE 2.1. Finally,
the following results indicate that the convergence rate of the Hausman statistic
HM N7 also depends on m:
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e Ve B 02 (ps2 —p31)a50% N A
NT2m+2(ﬁw - ﬁg) = __2 2 T2m - ) + Op (1)
oz oz
ol _ 252
— N(O ;(p32 P31qg z)
u

oy (P3,2 - P%,l)qgag

. 2m~+2 2 2
plsz,T—M)oNT * [Va’r(ﬁw) - VCLT(ﬂ )} 0_2 o_g

So far, we have considered several simple cases to demonstrate how the
convergence rates of the popular panel data estimators and the Hausman test are
sensitive to data generating processes. For these simple cases, all of the relevant
asymptotics can be obtained in a straightforward manner. In the following
sections, we will show that the main results obtained from this section apply
to more general cases in which regressors are serially dependent with arbitrary
covariance structures.

3 Conditional o - Mixing

In the asymptotic analysis of the general model (1) with large T', some technical
difficultes arise when some of the time varying regressors x;; are correlated with
the time invariant regressors z;. For such cases, the temporal dependence of
the time-varying regressors may persist through their correlations with the time
invariant regressors; that is, the time series of x;; may not be ergodic in time.
Thus, for general asymptotic results, we need to study the probability limits
of the random variables containing time-averages of such non-ergodic regressors
(i.e., Byt and byt in Section 2.2). In this section, we discuss the assumptions
that can facilitate derivations of the (joint) limits of such random variables as
(N, T — o00) simultaneously.

Consider CASE 3.3 with m = 0. Observe that the time series of x;; is
not ergodic, because of the presence of the time invariant random component
II;z; in x;. In addition, cov(zi, xi+1) = E(zi — E(xi)) (@it — E(zi441))
= 11?62 - 0 as | — oo. Thus, the termporal dependence of z;; does not
decay. Despite these problems, we were able to obtain handy asymptotic results
based on the two strong assumptions: E(x; | 2;) = II;2;, and the conditional
terms e;; = ;s — E(xj; | 2;) are i.i.d. over time. This example illustrates that
under some certain conditions imposed on non-ergodic time-varying regressors,
we can analyze the asymptotic properties of sample averages of panel data. In
fact, our major findings from CASE 3 remain unaltered even if we alternatively
assume that F(z; | 2;) is an arbitrary nonlinear function of z;, and/or the e;
are autocorrelated, so long as the e;; satisfy the conditions we discuss in detail
below. Formally, we consider a mixing model that is defined conditionally on the
sigma field generated by time invariant regressors z;, which we call a conditional
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mixing model. For this model, we can establish the joint limits of the sample
averages of panel data whose time series are non-ergodic, as we show in Section
4 and Appendix.

Suppose that (2, F, P) is a basic probability space, and G, H, Z are sub-
sigma fields of F with Z C G and Z C H. Then, a conditional a-mixing coeffi-
cient between two sub-sigma fields G and H on Z is defined as

az (G, H) :GegsuII;eH |Pz (GNH) — Pz (G) Pz (H)|, (31)

where Pz (-) denotes a conditional probability defined on the sigma field Z.1°
This conditional c-mixing coefficient is a straightforward extension of the usual
a-mixing coefficient, except that it uses the conditional probability Pz (-) in-
stead of the usual unconditional probability P ().

The general definition of the conditional c—mixing coefficient can apply to
our panel data model as follows. Suppressing the subscript ¢ for convenience,
assume that {z;}, and z are scalar random variables, respectively defined in the

probability space (Q, F, P), where sup, E |2;|*? < oo, for some ¢ > 1.1* Define
fioo =0 (...,$t71,$t) 7fto~id =0 (xt+m>$t+m+1; ) ,Z = U(Z),

where Z is assumed to be a non-trivial sigma field, i.e., in Z there exists a
subset A of  with 0 < P(A) < 1. Define

az (d) = sup sup |Pz (GNH)— Pz (G) Pz (H)|. (32)

t Gert _, HEF,

With this definition, we will say that the sequence {x;} is conditionally a-mixing
if and only if
az (d) —0as. , (33)

as d — 0o, where the almost sure convergence of az (d) holds with respect to
an outer probability measure P* of the probability space (2, F, P).12

A technical problem in using the conditional a-mixing coefficient az (d) (as
well as az(G,H)) is that it is not necessarily measurable with respect to the
conditioning sigma field Z. This problem raises some technical difficulties in
deriving useful inequalities. For example, following the usual techniques related
to (unconditional) a—mixing coefficients, one may expect that the following
conditional versions of a-mixing inequalities hold:

B2 (riesa) ~(Bza) (B < 2oz (4)°7) (sxtlp(Ez m”)f L (30)

|Ez (xi214q)— (Ezxt) (Ezxigq)| < 8 (ch (d)gq_l><sgp (EZ |$t|2q>)% 7 (35)

10We also could define similar conditional mixing coefficients of 3— mixing and ¢— mixing.

11 The x; need not be strictly stationary.

12For the details of the outer probability measure P*, readers may refer to Chapter 1.2 of
van der Vaart and Wellner (1996).
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where Fz(-) to the conditional expectation with respect to a sigma field Z. The
inequality (34) is a conditional version of Theorem 1 and equation (1.3) in Rio
(1993), or Theorem 1.1 and Corollary 1.1. of Bosq (1996). The inequality (35) is
a conditional version of the mixing inequality in Corollary A.2 of Hall and Heyde
(1980, p. 278). Observe that both of the inequalities indicate covz (x4, T444) — 0
as d — 00, so long as the sequence {z;} is conditionally a—mixing. We may
obtain these inequalities by modifying the method used in Rio (1993) or Hall
and Heyde (1980) with the conditional arguments. However, to do so requires
az (d) to be measurable.!3

It is difficult to derive the sufficient and necessary conditions that warrant
Z-measurability of the conditional mixing coefficient, az(d) or az(G, H). Thus,
we here only consider a sufficient condition. Stated formally:

Theorem 1 Suppose that the sigma field Z is generated by a countable partition
II={IL,..1L;, ...} of Q with P(IL;) > 0 for alli. Then, az (G, H) in (31) is
measurable with respect to the sigma field Z.

When Z is the sigma field generated by a time-invariant regressor z, the
restriction on Z imposed by Theorem 1 is satisfied if z is a discrete random
variable, i.e., the supports of z are countable. This condition would not be
too restrictive in practice. In many empirical studies, time invariant regressors
generally consist of dummy variables (such as gender, race, or region), or dis-
crete variables (such as years of schooling). Such variables easily satisfy the
requirement of Theorem 1.

4 Main Results

This section derives for the general model (1) the asymptotic distributions of
the within, between, GLS estimators and the Hausman statistic. In Section
2, we have considered independently several simple models in which regressors
are of particular characteristics. The general model we consider in this section
contains all of the different types of regressors analyzed in Section 2. More
detailed assumptions are introduced below.

From now on, the following notation is repeatedly used. The expression
“ 2

—,” means “converges in probability,” while “=” means “converges in distri-
bution” as in Section 2.2. For any matrix A, the norm ||A|| signifies \/tr(AA’).

When B is a random matrix with E || B||, < oo, then || B|, denotes (E IB|IP)**.
We use Ex(+) to denote the conditional expectation operator with respect to a

sigma field 7. We also define ||B|| -, = (Er HBHp)l/p, The notation zy ~
apy indicates that there exists n and finite constants d; and ds such that

13 Admittedly, we here do not attempt to determine whether or not measurability of az (d)
is a necessary condition for the conditional mixing inequalities (34) and (35). It might be
possible to derive the inequalities with some alternative methods that do not require the
measurability assumption. Thus, we would like to emphasize that measurability of az(d) is
a sufficient, but not necessarily a necessary condition.
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a

relevant sigma-fields: F,, = o(zi1, ..., xi7); Fzoy = 0 (2i); Fo = 0 (Fayy ooy Fan )
Fuw; = 0 (Fuyy Fzp); and Fyy = 0 (Fupyy ooy Fuwy ) - The x4 and z; are now k x 1
and g x 1 vectors, respectively.

As in Section 2, we assume that the regressors (2}, ..., 2}y, 2;)" are indepen-
dently distributed across different 7. In addition, we make the following the
assumption about the composite error terms u; and v;;:

infn>n % > dy and supys, % < dy. We also use the following notation for

Assumption 1 (about u; and v;): For some q > 1,

(i) the u; are independent over different i with sup;E |u;|*? < cc.

(ii) The vy are i.i.d. with mean zero and variance o2 across different i and t,

and are independent of x;s, z; and u;, for alli, t, and s. Also, ||vit|\4q = Ky
is finite.

Assumption 1(i) is a standard regularity condition for error-components models.
Assumption 1(ii) indicates that all of the regressors and individual effect are
strictly exogenous with respect to the error terms v;;.'

We now make the assumptions about regressors. In Section 2, we have con-
sidered three different cases: CASEs 1, 2, and 3. Consistently with these cases,
we partition the k& x 1 vector z;; into three subvectors, x1 i, 2, and 3,
which are k; x 1, k2 x 1, and ks x 1, respectively. The vector z; ;; consists of
the regressors with deterministic trends. We may think of three different types
of trends: (i) cross-sectionally heterogeneous nonstochastic trends in mean (but
not in variance or covariances); (ii) cross-sectionally homogeneous nonstochas-
tic trends; and (iii) stochastic trends (trends in variance) such as unit-root time
series. In Section 2, we have considered the first two cases as CASEs 1.1 and
1.2, respectively. The latter case is materially similar to CASE 2.2, except that
the convergence rates of estimators and test statistics are different under these
two cases. Thus, we here only consider the case (i). We do not cover the cases
of stochastic trends (iii), leaving the analysis of such cases to future study.

The two subvectors z3;+ and x3;; are random regressors with no trend in
mean. The partition of x5 ;; and x3;; is made based on their correlatedness
with z;. Specifically, we assume that the xs ;; are not correlated with z;, while
the x3 ;; are. In addition, in order to accommodate CASEs 2.1 and 2.2, we also
partition the subvector xs ;; into x21 ;x and xa9 i1, which are ko x 1 and kog X 1,
respectively. Similarly to CASE 2.1, the regressor vector x2; ;; is heterogeneous
over different ¢, as well as different ¢, with different means ©2; ;;. In contrast,
2214 is homogeneous cross-sectionally with means ©s2; for all 7 for given t.
We also incorporate CASEs 3.1, 3.2 and 3.3 into the model by partitioning 3 ;
into 31 ,4t, ©32,4¢, and w33 44, which are k31 x 1, k32 X 1, and k33 X 1, respectively,
depending on how fast their correlations with z; decay over time. The more
detailed assumptions on the regressors x;; and z; follow:

14 A5 discussed in Section 2.1, this assumption rules out weakly exogenous or predetermined
regressors.
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Assumption 2 (about x1 4 ):
(i) For some q> 1, k, =sup;, |21, — Bz ull,, < oo

(ii) Let xp1it be the h'h element of x1 . Then, Exp 44 ~ t™m1 for all i and
h=1,...,k1, where mp 1 > 0.

Assumption 3 (about z3,): For some q¢ > 1,

(i) {22t — Exa4}, s an a-mizing process for all i, and is independent of
F.; for alli. Let o; be the mizing coefficient of xo ;. Then, sup; o (d) is

of size 73#1, i.e., sup,; a; (d) = O (d_p_?’q%l), for some p > 0.

(1) E(x21,it) = O21,it and E(x22,:) = Oa2.¢, where sup; ; [|O21,i¢ |, sup, [|Oa2||
< 00, and Oz 4t # O21 54 if i £ J.

(#1) Ky, = sup; ; |z, — E.’Eg,it||4q < 00.
Assumption 4 (about x5 ): For some g > 1,

(i) {iEgyit - Er., x37it}t is conditional a-mizing for alli. Let ar, be the con-
ditional a-mizing coefficient of x3, on F,,. Then, sup; a,, (d) is of size
—3q—31 a.s., i.e., sup; a, (d) = O (d7p73q_3_1) a.s., for some p > 0. Also,

E (220:1 d? sup;, (O‘in (d)%l))2 < 00.

(ii) E(x3,it) = O3, where sup; ; [|O3 ;¢ < oc.
i) E i — Br s |3
(i) (supi)t ng’zt — f2ix3,1t|}f2i74q> < 00.

(iv) Let ap, 31t be the h'" element of x3y. i, where k = 1,2,3. Then, conditional
on z;,

(iv.1) (Efz‘l'}%gl’it — Eazh7317it) ~ ™R3 g8, where % < mp,31 < 00 for
h=1,..,ky, (here, my 31 = oo implies that Ex, xp, 31t — Exp 31,4 =
0 a.s.);

(iv.2) (Ef2i$h’32’it - E.’Eh,g,g’it) ~ 173 a.s. forh=1,.. k,;

(iv.3) (E}-Zi Th,33,it — Emh733’it) ~ T3 s, where 0 < mp, 33 < % for
h=1,.. k.

Assumption 5 (about z;):

(i) {zi}i is ii.d. over i with E(z;) = ©,, and ||z, < oo for some g > 1.

(ii) The support of the density of z; is countable for all i.
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Two points may be worth mentioning here. First, Assumption 4(i) dictates
that the regressors in 3 ;; are mixing conditional on F,,. Alternately, we may
assume that x3 ;¢ and z; have some common factors, say f; (i = 1,...,N), on
which, conditionally, the variables in x3 ;; are mixing. This alternative assump-
tion does not generate any materially different asymptotic result. Second, as
discussed in Section 3, Assumption 5(ii) warrants that the conditional a—mixing
coefficient «,, (d) is measurable.

Panel data estimators of individual coefficients have different convergence
rates depending on the types of the corresponding regressors. To address these
differences, we define:

Dyr = diag(Dir, Dar, Dar);
Dr = diag(Dyr, 1),
where
Dy = diag(T m m’“l);
Dyr = diag(DmT,DmT)—dwg (Ikzla\/_lkzz);
Dsr = diag(Dsir, Dsor, D3sr)

= diag (\/Tjksu \/Tjk32,Tml’33, . ka33,33> )

Observe that D7, Dor, and Dsr are conformable to regressor vectors xi i,
Z2,it, and x3 4, respectively, while D7 and I, are to x; and z;, respectively.
The diagonal matrix Dp is chosen so that plim Nﬁoo% > Drwwi Dy is well
defined and finite. For future use, we also define

Gor = diag(Dir, Iy, Ihgsy Ins)
Jer = diag (Iy,, Iy, Daor, D3r)
so that
Dac,T = Gac,TJx,T-
Using this notation, we make the following regularity assumptions on the un-

conditional and conditional means of regressors:

Assumption 6 (convergence as T — o0): Defining t = [T'r], we assume that
the following restrictions hold as T — oc.

(i) Let 71 (r) = diag (r"™**,...,r™*11) where my, 1 is defined in Assumption
2. Then,
DirE (x1,44) — 71 (r)©O1,

uniformly in ¢ and r € [0,1], for some ©1,; = (@1’1,2»,...,@;%1#')/ with
sup; |61,:]] < oo.

(ii) ©21,it — O21,; and O3 ;; — Oz; uniformly in i with sup; ||O21 ;| < 0o and
sup; [|©3,:[] < oo.
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(iii) Uniformly in i and r € [0,1],
D37 (EJ-' z31,it — Exs1 i) — 0k31><1 a.s.;
Dsor (Efzi T30t — Exsa i) — Ik32.‘]32 i(zi) a.s.;
Dssr (Er, w330 — Bss i) — 733 (r) gss.i (2:) a.s.,

where
/ /
932,i = (91,32,is ~~,9k32,32,i> ) 9330 = (91,33,4, ~~~,9k33,33,i) s
and gs2; (z;) and gss,i(2;) are zero-mean functions of z; with

0 < Esup||ga.i (z:)]|* < o0, for some g > 1,
i

and gsk,; # gsk,j for i # j, and T3z (r) = diag (r~"™183, T Mksa83),
(iv) There exist 7 (1) and G; (z;) such that
|Dsr (B, w34 — Exs ) || < F(r)Gi(2),
where [T (r)*dr < 0o and Esup; G; ()™ < oo for some q > 1.
(v) Uniformly in (i,j) and r € [0,1];

Dsir (Ex31,it — Ex31jt) — Okgyx1s
Dsor (Exs2,it — Exsa,ji) — ﬁfkgz (Mgm - Mg32j> ,
D33t (B335t — B33 j1) — 733 (7) (,ugw - Mg33j) ;

, SUpP; ||lu‘933i

with sup; ||y, < 00.

Some remarks would be useful to understand Assumption 6. First, to have
an intuition about what the assumption implies, we consider, as an illustrative
example, the simple model in CASE 3 in Section 2.2, in which x3 ;¢ = IL;2z; /"™ +
eit, where e;; is independent of z; and i.7.d. across ¢. For this case,

D3t (Efzi 23,1 — Exs i) = Dsrll; (2, — Ez;) /t™;
D3T (E£C37it — E.’Eg,jt) = D3T (HlEZZ — HjEZj) /tm
Thus,
93k (2) = I (zi — Ez);

Mgse: = L Ez;.

Second, Assumption 6(iii) makes the restriction that Esup; ||gsk,: (%) 149 is
strictly positive, for k = 2, 3. This restriction is made to warrant that gsy ; (2;) #
0 a.s. If g3k (2;) = 0 a.s., 1°then

DayrEr, (v3k,it — Exak,it) ~ 73k (1) 932, (21) = 0 ass.,

15An example is the case in which x3,5t = e;¢11;z; /t™ where e;; is independent of z; with
mean zero.
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and the correlations between s ;; and z; no longer play any important role in
asymptotics. Assumption 6(iii) rules out such cases.

Assumption 6 is about the asymptotic properties of means of regressors
as T — oo. We also need additional regularity assumptions on the means of
regressors that apply as N — oo. Define

1 1 !
1
H, :/0 T1(r)dr; Hzp = (/0 Wdr) Tso; Hsz :/O Ta3(r)dr;

and
/
H32932,i (Zz) H32932,i (Zz) F9327932,i ngz,gss,i ngzyzﬁi
FE H. ; (Z) H. ; (Z) = IV T i I ;
33033,i \Zi 33933,i \Zi 932,933,1 933,933,% 933,%,%
Z; 7EZZ i 7EZZ ! I’ Fzzi

932,2,% 933,27 »

With this notation, we assume the followings:

Assumption 7 (convergence as N — o0): Define (:)1,1- =01,; — % > O1;

L — R o _ _ 1 . ~ _
92171 - 921,1 N Zz’ @217“ N’ggz,i - N’gsz,i N Zi N’gsz,i’ and N’933,i - N’933,i
1
N i bgyy - As N — 00,

~ ~ /
%9177; %@17i 1—‘91,@1 F91,921 F®17H32 P@hugg

/
(Z) LZ @21,1‘ @21,2‘ - FG)l,G)zl Lesi,00: F@21>#32 F@21,#33
N£Lai ~ ~ / /
H32'ug32,1‘ H32'u’g32,1 F®17H32 F@21’H32 FN32»M32 FN327N33
~ ~ / / ’
H33'u933,i H33'u933,i F@hltgg F@21’M33 FM32»933 FN337N33
. ?3275732,1' F932,g33,i F932727’i 932,932 F932,g33 Fg32,z
.. ) _ 7
(”) NZi Fg32,g33,i 1—‘9337933,Z F9337Z>1 - F932,933 F933,933 F933,2
7 Il T.. . 7 7 r
932,21 933,21 22,1 932,% 933,% z,z

(iii) The limit of Y, 01,01 ; eists.

Apparently, by Assumptions 6 and 7, we assume the sequential convergence
of the means of regressors as T — oo followed by N — oo. However, this by
no means implies that our asymptotic analysis is a sequential one. Instead, the
uniformity conditions in Assumption 6 allow us to obtain our asymptotic results
using the joint limit approach that applies as (N,T — oo) simultaneously.'®
Joint limit results can be obtained under an alternative set of conditions that
assume uniform limits of the means of regressors sequentially as N — oo followed
by T' — oco. Nonetheless, we adopt Assumptions 6 and 7, because they are much
more convenient to handle the trends in regressors 1 ;+ and x5 ;+ for asymptotics.

The following notation is for conditional or unconditional covariances among
time-varying regressors. Define

I (t,s) = [T (t,s)]s

16For the details on the relationship between the sequential and joint approaches, see Apos-
tol (1974, Theorems 8.39 and 9.16) for the cases of double indexed real number sequences,
and Phillips and Moon (1999) for the cases of random sequences.
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where I';;; (t,s) = F (xj,it - EF., xj’it) (wl,is — Er., xl’is)7 for 7,1 = 2,3. Essen-

tially, the I'; is the unconditional mean of the conditional variance-covariance

matrix of (x4, 745 ,,)’. We also define the unconditional variance-covariance
4 / / / /

matrix of (331,¢t7932,¢t7933,¢t) by

Fi (t, S) = [Fjl,i (t7 s)]jla

where fjl,i (t,s) = E(xjit — Exji) (21,5 — Exy4s), for j,1 = 1,2,3. Observe
that T'og, (¢,8) = fgg’i (t,s), since wg; and z; are independent. With this
notation, we make the following assumption on the convergence of variances
and covariances:

Assumption 8 (convergence of covariances): As (N,T — o0),
. Tooi(t,s) Tag;(t,s) [oo T
1 1 22,i (5 23,i (1, 22 123
)T — .
()~ 21 2 2}8 ( 93 (t,8) D's3i(t,s) Iy Ts3
(ii) & Y, &3, Fi(t,1) — o.
Note that the variance matrix [le] j.i=2,3 is the cross section average of the long-
run variance-covariance matrix of (mé,it, mg,it)/. For future use, we partition the

3 3 3 4 / / / / / !/
two limits in the assumption conformably to (25; ;4,759 j1T51 it,T52 14:T33 i) S
follows:

To121 T'2122 T2131 T'2132 T'2133
/
oy T 5122 L2222 Taaz1 Tazsze T'azss
22 23 _ / / T r T .
T’ T - 21,31 22,31 31,31 31,32 31,33 )
23 ©33 / T’ ! Tao a0 Tao ac
2132 12232 13132 13232 13233
/ ! / !
9133 T'9o33 I'siss I'sogs I'ssss

D1 Dip Py3
o = @112 (I>22 @23
/ / (p
13 @23 933
Finally, we make a formal definition of the random effects assumption, which
is a more rigorous version of (3).

Assumption 9 (random effects): Conditional on Fy,, {u;}

N 18 i.5.d. with
mean zero, variance o2 and finite Kk, = ||u||
) u U N Fy 4

i=1,..

To investigate the power property of the Hausman test, we also need to
define an alternative hypothesis which states a particular direction of model
misspecification. Among many alternatives, we here consider a simpler one.
Specifically, we consider an alternative hypothesis under which the conditional
mean of u; is a linear function of Drw;. Abusing the conventional definition
of fixed effects (that indicates nonzero-correlations between w; = (zf;, z;)" and
u;), we refer to this alternative as the fixed effects assumption:

Assumption 10 (fized effects): Conditional on F, the {u;},_, is i.i.d.
with mean w, D\ and variance o2, where X is a (k+g) x 1 nonrandom nonzero

vector.
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Here, Drw; = [(Dg,1%;), 2] can be viewed as a vector of detrended regressors.
Thus, Assumption 10 indicates non-zero correlations between the effect u; and
detrended regressors. The term w} DA can be replaced by A, + W} Dy, where
Ao is any constant scalar. We use the term w} D X instead of A\, +%; DA simply
for convenience.

A sequence of local versions of the fixed effects hypothesis is given:

Assumption 11 (local alternatives to random effects): Conditional on Fy,, the

sequence {u;},_, i i.i.d. with mean w;DrA/V' N, variance o2, and ki =

Ex, (u; — E]:wui)4 < 00, where X # O(1¢)x1 5 a nonrandom vector in RF+9,

Under this Assumption, E (Drw;u;) = ﬁE (DT@ﬂE;—DT> A = Ogryg)x1, @S
(N, T — o0).

Although Assumptions 10 and 11 are convenient to analyze the power prop-
erties of the Hausman test, they are somewhat restrictive. Specifically, under
these alternative hypotheses, the Hausman test lacks power to detect correla-
tions between the effect u; and the time invariant regressors z;. To see this,
suppose we partition A into (A, \,)’ corresponding to w; = (7, 2})’. Assume
that Ay = Ogx1; that is, the z; (t = 1,...,T) are not correlated with w;, con-
ditional on z;. For simplicity, assume that 7" is fixed. For this case, under the
fixed effects assumption, the between estimators of 8 and ~, 8, and 7,, are
equivalent to least squares on the model

Ui = 08% + (v + )z + (uf + ),

where u} = u; — W, D\ = u;— \,Z;. From this, we can easily see that Eb and
7, are asymptotically unbiased estimators of 3 and (y+ A,), respectively. That
is, 7, is not an asymptotically unbiased estimator of v. As we have discussed
in Section 2.2, the asymptotic distribution of the Hausman statistic depends on
that of 3,, not of 4,. Thus, the Hausman test does not have power to detect
the violations of the random effects assumption that do not bias Bb (regardless
of the size of T'). Accordingly, under our fixed effects and the local alternative
assumptions (Assumptions 10 and 11), the Hausman test possesses no power to
detect nonzero correlations between z; and wu;. This problem arises of course
because we assume that the conditional mean of the effect u; is a linear function
of w;. When the conditional mean of the effect is a nonlinear function of ;,
the Hausman test can possess power to detect nonzero correlations between u;
and z;.17

The following lemmas provide some results that are useful to derive the
asymptotic distributions of the within, between, and GLS estimators of 5 and

.

17Even if the conditional mean of u; is linear in w;, the Hausman test may have power
to detect non-zero A;, if Az and A\, are not functionally independent. For example, consider
a model with scalar x;; and z;. Suppose that z;; and z; have a common factor f;; that is,
zit = fi + et and z; = f; +n;. (This is the case discussed below Assumption 5.) Assume
E(u; | fi,n;,€) = cn;. Assume that f;, n; and e;; are normal, mutually independent, and
i.5.d. over different ¢ and ¢ with zero means, and variances 0’?, U%,and a2, respectively. Note

that under given assumptions, x;+ is not correlated with u;, while z; is. For this case, however,
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Lemma 2 Under Assumptions 1-8, we obtain the following results as (N, T —
o00). For some positive semidefinite matrices W, and Z (defined in the Ap-
pendiz),

(a) %25 7 24 GorTit®yGor —p Vo

(b) <% 3 7 2t GarTuie = N (0,0094) ;

(¢c) + X, Drw;w;Dr —, E;

(d) \/Lﬁ 22 Drwiti —p O(hgg)x1-
Lemma 3 Under Assumptions 1-8 and Assumption 11 (local alternatives to
random effects), as (N, T — 00),

\/LN > Drwit; = N (X, 05E) .
Lemma 4 Under Assumptions 1-8 and Assumption 10 (fized effects),
% > Drwiu; —p EX,

as (N, T — o0).

The following assumption is required for identification of the within and
between estimators of 5 and 7.

Assumption 12 The matrices ¥, and = are positive definite.

Two remarks on this assumption follow. First, this assumption is also sufficient
for identification of the GLS estimation. Second, while the positive definiteness
of the matrix = is required for identification of the between estimators, it is not
a necessary condition for the asymptotic distribution of the Hausman statistic
obtained below. We can obtain the same asymptotic results for the Hausman
test even if we alternatively assume that within estimation can identify 3 (pos-
itive definite ¥,) and between estimation can identify v given § (the part of
E corresponding to z; is positive definite).'® Nonetheless, we assume that = is
invertible for convenience.

We now consider the asymptotic distributions of the within, between and
GLS estimators of # and ~:

we can show that
E(ui | ®i,21) =Tida + 2iz,

where d = (0?, —+ ag/T)(J? —+ a%) — 0';%, Az = fcaf,o%/d, A = c(of, —+ ag/T)o%/d. Observe
that Az # 0, if A, # 0 (¢ # 0). Thus, A, is functionally related to A.. In addition, it is easy
to show that plimNﬁooEb =B+ Xz # B, if Ay #0 (¢ # 0). Thus, nonzero A, biases Elr

18This claim can be checked with the following simple example. Consider a simple model
with one time-varying regressor z;; and one time invariant regressor z;. Assume that z;; =
az; + e;t, where the e;; are i.i.d. over different ¢ and ¢. For this model, it is straightforward
to show that the matrix = fails to be invertible. Nonetheless, under the random effects
assumption, the Hausman statistic can be shown to follow a x? distribution with the degree
of freedom equal to one.

26



Theorem 5 (asymptotic distribution of the within estimator): Under Assump-
tions 1-8 and Assumption 12, as (N, T — o0),

VNTG, (B, — B) = N (0,029, 1).

Theorem 6 (asymptotic distribution of the between estimator): Suppose that
Assumption 1-8 and 12 hold. As (N, T — o),
(a) under Assumption 9 (random effects),

DR/N( br =0 ) = ( D;;ﬁ(gb_ﬁ) ) = N (0,0227");
A VA (3 —7) ’
(b) under Assumption 11 (local alternatives to random effects),
. . 5
Di! N( By =0 ) = DLTW(@’_@ N (2, 02271
PGy )= v, T NEeE)

Theorem 7 (asymptotic distribution of the GLS estimator of 8): Suppose that
Assumptions 1-8 and 12 hold.
(a) Under Assumption 11 (local alternatives to random effects),

VNTG (B, 6) = VTG (B~ B) + 0, 1),

as (N, T — o0).
(b) Suppose that Assumption 10 (fized effects) holds. Partition A = (X, \,)’

Ttz

conformably to the sizes of x;; and z;. Assume that Ay # Ogx1. If N/T — ¢ < 00
and the included regressors are only of the xag ;- and x3 ¢-types (no trends and
no cross-sectional heteroskedasticity in x;;), then

VNTG, ) (BQ - ﬁ) = VNTG (Bw - ﬁ) +op(1).
Theorem 8 (asymptotic distribution of the GLS estimator of v): Suppose that
Assumptions 1-8 and 12 hold. Define I, = <ngk§Ig). Then, the following

statements hold as (N, T — 00).
(a) Under Assumption 11 (local alternatives to random effects),

—1
A 1 . 1
R, = (3553) (FFan e
= N((l;Elz)_ll;E)\7 o2 (z;azz)‘l).
(b) Under Assumptionl0 (fixed effects),

(3 =) —p (LEL) 123N
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Several remarks follow. First, all of the asymptotic results given in Theorems
5-8 except for Theorem 7(b) hold as (N,T — o0), without any particular re-
striction on the convergence rates of N and T'. The relative size of N and T' does
not matter for the results, so long as both N and T are large. Second, one can
easily check that the convergence rates of the panel data estimates of individual
0 coefficients reported in Theorems 5-8 are consistent with those from Section
2.2. Third, Theorem 6 shows that under Assumption 9 (random effects), the
between estimator of v, 7, is v/ N—consistent regardless of the characteristics
of time-varying regressors. Fourth, both the between estimators of 8 and ~
are asymptotically biased under the sequence of local alternatives (Assumption
11). Fifth, as Theorem 7(a) indicates, the within and GLS estimators of 3 are
asymptotically equivalent not only under the random effects assumption, but
also under the local alternatives. Furthermore, the GLS estimator of 3 is asymp-
totically unbiased under the local alternatives, while the between estimator of 5
is not. The asymptotic equivalence between the within and GLS estimation un-
der the random effects assumption is nothing new. Previous studies have shown
this equivalence based on a naive sequential limit method (" — oo followed
by N — o) and some strong assumptions such as fixed regressors. Theorem
7(a) and (b) confirm the same equivalence result, but with more rigorous joint
limit approach as (N,T — oo) simultaneously. It is also intriguing to see that
the GLS and within estimators are equivalent even under the local alternative
hypotheses.

Sixth, somewhat surprisingly, as Theorem 7(b) indicates, even under the
fixed effects assumption (Assumption 10), the GLS estimator of S could be
asymptotically unbiased (and consistent) and equivalent to the within counter-
part, (i) if the size (N) of the cross section units does not dominate excessively
the size (T') of time series in the limit (N/T — ¢ < o), and (ii) if the model does
not contain trended or cross-sectionally heterogenous time-varying regressors.
This result indicates that when the two conditions are satisfied, the biases in
GLS caused by fixed effects are generally much smaller than those in between.
If at least one of these two conditions is violated, that is, if N/T — oo, or if
the other types of regressors are included, the limit of (3 g~ B,) is determined
by how fast N/T — oo and how fast the trends in the regressors increase or
decrease.'?

Finally, Theorem 8(a) indicates that under the local alternative hypothe-
ses, the GLS estimator ¥, is v/ N—consistent and asymptotically normal, but
asymptotically biased. The limiting distribution of 4, in this case, is equivalent
to the limiting distribution of the OLS estimator of + in the panel model with
the known coefficients of the time-varying regressors x;; (OLS on g3z — 3% =
Y'Zi + (u; +vit)). Clearly, the GLS estimator 7, is asymptotically more effi-
cient than the between estimator 4,. On the other hand, under the fixed effect

~

assumption, unlike the GLS estimator of 3, §,, the GLS estimator ¥, is not
consistent as (N,T — o). The asymptotic bias of 4, is given in Theorem 8(b).

19Tn this case, without specific assumptions on the convergence rates of N/T and the trends,
it is hard to generalize the limits of the difference of the within and the GLS estimators.
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Lastly, the following theorem finds the asymptotic distribution of the Haus-
man test statistic under the random effect assumption and the local alternatives:

Theorem 9 Suppose that Assumptions 1-8 and 12 hold. Corresponding to the
size of (T}, z1)', partition = and X, respectively, as follows:

=\=. =. ) "= )
Then, as (N, T — 00),

(a) under Assumption 9 (random effects),

[1]

HMNT = Xi;
(b) under Assumption 11 (local alternatives to random effects),

HMnr = xi(n),

where n = N (Zpe — 2222, 20 ) Aa /02 is the noncentral parameter.

Theorem 9 shows that under the random effects assumption, the Hausman
statistic is asymptotically x?—distributed with degrees of freedom equal to k
(the number of the time-varying regressors). Furthermore, Theorem 9 (ii) shows
that the Hausman statistic has significant local power to detect any correlation
between the time-varying regressors x;; and the effect w;. This is so, because
the noncentral parameter n equals zero if, and only if, A\, = Oxx1. In contrast,
the noncentrality parameter 17 does not depend on A, indicating that the Haus-
man test has no power to detect nonzero correlations between time invariant
regressors z; and the individual effect u; in the direction of our local alternative
hypotheses (Assumption 11). This result holds even if T is finite and fixed. As
discussed earlier, this is due to the fact that the conditional mean of the effect u;
is a linear function of regressors under our local alternative hypotheses. When
the conditional mean is not linear, the Hausman test could have a power to
detect nonzero correlations of the effect w; with the time invariant regressors.
However, the power of the Hausman test to such correlations is generally lim-
ited. This is so because the Hausman test can detect such correlations only if
they can cause a large bias in the between estimator of 3, the coefficient vector
on time-varying regressors (see Ahn and Low, 1996).

5 Conclusion

This paper has considered the asymptotic properties of the popular panel data
estimators and the Hausman test. We find that the convergence rates of the
estimators and the test statistic are sensitive to data generating process. In
particular, the convergence rates of the between estimator crucially depend on
whether the data are cross-sectionally heteroskedastic or homoskedastic. De-
spite the different convergence rates, however, the estimators are consistent and
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asymptotically normal under the random effects assumption. The conventional
Hausman test is also well defined. The Hausman test, which is based on the
difference between the GLS and within estimators, has significant local power
to detect violations of the random effects assumption (in particular, non-zero
correlations between the time-varying regressors and unobservable individual
effects), despite the fact that the two estimators are asymptotically identical
under a sequence of local alternative hypotheses.

In this paper, we have restricted our attention to the asymptotic properties
of the existing estimators and tests when panel data contain both large numbers
of cross section and time series observations. Apparently, thus, this paper does
not provide any new estimator or test. However, this paper makes several
contributions to the literature. First, our findings have pedagogical values for
future studies. For example, we find that asymptotics as (N, T — oo) are
much more sensitive to data generating processes than asymptotics as either
N — oo or T — oo are. However, previous studies have often assumed that
data are cross-sectionally i.i.d.. Our findings suggest that future studies should
pay more attention to cross-sectional heterogeneity. Second, we consider the
cases in which the time series of time-varying regressors are not ergodic due to
their correlations with time invariant regressors. For such cases, we have shown
that the limits of averages of panel data can be derived under the assumption of
conditional a—mixing. It would also be interesting to see how this conditional
a—mixing concept can be refined and generalized to other more sophisticated
panel data models. Finally, differently from many other previous studies, we
avoid making any particular restriction on the relative sizes of N and T. We
do so using a more rigorous joint limit instead of other simple sequential limit
methods. Thus we are confident that our theoretical results apply to a broader
range of panel data.

An obvious extension of our paper is the instrumental variables estimation
of Hausman and Taylor (1981), Amemiya and MaCurdy (1986), and Breusch,
Mizon and Schmidt (1989). For an intermediate model between fixed effects and
random effects, these studies propose several instrumental variables estimators
by which both the coefficients on time-varying and time invariant regressors can
be consistently estimated. It would be interesting to investigate the large N and
large T properties of these instrumental variables estimators and the Hausman
tests based on these estimators.
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6 Appendix A: Preliminary Results

We here provide some preliminary lemmas that are useful to prove the main
results in Section 4. From now on, we use the notation M to denote a generic
constant, if no explanation follows.

Lemma 10 Let f;r, fi, and g; are integrable functions in probability space
(QF,P). If fir — fi a.s. uniformly in i as T — oo, and there exists g;
such that |f; | < g; for all i and T with Esup;g; < oo, then Ef,r — Ef;
uniformly in i as T — oo.

Proof
Let hiyr = |fir — fi| . Under given assumptions, 0 < sup, h;r < 2sup, g;
and h; 7 — 0 uniformly in ¢ as T'— oo. Then, by Fatou’s Lemma

2Esupg; = F (h%n inf <2 sup g; — sup hi7T>>

IN

liminf B (2 sup gi — sup hi’T>

= 2F sup g;— limsup Ebup hi,r,

— 00

from which we can deduce

limsup E'sup h; r < 0.

T—o0 7
Then, since

0 <limsup sup |E (f;,r — fi)| <limsup sup Eh; v <limsup Esup hir <0,

T—o0 i T—o0 i T—o0

we have the required result: Ef; 7 — Ef; uniformly in ¢ as 7' — oo. B

The following lemma is a uniform version of the Toeplitz lemma.

Lemma 11 Let a;; be a sequence of real numbers such that a;z — a; uniformly
ini ast — oo with sup; |a;| < M. Then, (a) %>, aix — a; uniformly in i, and
(b) %>, a2, — a? uniformly in i.

Proof
From the uniform convergence of a;:, for a given ¢ > 0, we can choose tg
such that t > ¢ implies that

sup |a; — ai| < e.
i

Then, Part (a) follows because t > t; implies

sup TZ ait — < —Zsup\a” a;| <e.
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For Part (b), notice that
su_p|aft—af| < supla; + ai|sup|ai — a;
(3 (3

< Msuplai —ai| — 0

ast — oo, where the last inequality holds because sup; |a;| < co and sup |a;+ — a;
— 0. Then, by Part (a), we can obtain the desired result. B

Lemma 12 Suppose that X; v and X; are sequences of random vectors. Sup-
pose that X; r — X; in probability (or almost surely) uniformly in i as T — oo,
and %Zz X; — X in probability (or almost surely) as N — oo. Then, as
(N, T = 0),

1
W E Xi,T — X
in probability (or almost surely).

Proof

We only prove the lemma for the case of convergence in probability, because
the almost sure convergence case can be proven by the similar fashion. Since
% > Xi —p X as N — oo and X —, X; uniformly in i as T' — oo, for given
e,6 > 0, we can choose Ny and Ty such that

1 € )
PU=S"X, - x||>=} <=
{ N; >2}—2
5 o

Plsup||X;7 — Xil| > = & < =,
{bng T ||>2} 5

whenever N > Ny and T > T. Now, suppose that N > Ny and T > T. Then,

p{ >%

%ZXLTfX

1 15 1 €
< - X e _ . e
< P{Ngjxj &)>2}+PwNZ}& X>ﬁ}
€ 1)
< planlCta x> 5+ 5=

Lemma 13 Suppose that a sequence of random vectors Z; is independently dis-
tributed across i. Let F,, = o (Z;). Assume that Q;r (k x k) is a sequence of
independent random matrices across i satisfying

S.u,lPE‘FZi |Qir || 1{|Q:ir| > M} — 0 a.s., (36)
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as M — oo, where 1(-) is the indicator function that equals one if the argument
in the parenthesis is correct, and otherwise equals zero. Then, as (N,T — o),

% Z (Qir — Ex, Qir) — 0.

In fact, Lemma 13 still holds even if we replace the conditional mean oper-
ator Er, (-) by the unconditional operator E(-). Thus, we have the following
corollary.

Corollary 14 Suppose that Q;r (k X k) is a sequence of independent random
matrices across i satisfying

S,UJPE 1Qir || 1{||Qir|| > M} — 0 a.s., (37)
2y
as M — co. Then, as (N, T — 00),
1
~ Z (Qir — EQir) — 0.
K2
Proof of Lemma 13

Let ., = o (F.,,...,F.y) and Ex, denote the conditional expectation on
F,. For any € > 0, we need to show that
> 8} — 0.

P {

This follows from the dominated convergence theorem if we can show that
1

P, { ~ ZZ: (Qir — Er. Qir)

But, this in turn follows from the conditional Markov inequality if we can show
that

% Z (Qir — Er. Qir)

> e} — 0 a.s..

Ex, — 0 a.s.. (38)

1
N Z (Qir — Er. Qir)
To show (38), define:

Pir = Qirl{||Qir|| £ M}; Rir = Qir 1 {||Qir|| > M} .

Then, almost surely,

1
Er, N Z (Qir — Er,. Qir)
1 1
< Eg, ~ Z (Pir — Ex. Pir)|| + EF. ~ Z (Rir — Ex. Rir)
K3 s 3
1 2\’ 1
< | Ex NZ(PiT_E}'ZiPiT) +2N2Efzi [ Rir||-
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By definition,

1
N > Er |Rir|

< S,ujPEfzi | Rir|| < S.u,IPE]:Zi Qir || 1{l|Qirll > M} . (39)
Also,
1
1 2
Er | =S (Pr—Er P,
| 3 (P = )
3 1 1
= (NQZEf i — Ery, zT”) —N<SupEfz ||P1T|>
1
< L (40)

VN

Choose M = N®, where 0 < a < % Then, (39),(40) — 0 a.s.. Consequently,
we have (38). B

Lemma 15 Suppose that Assumptions 1-8 hold. Let F° = o (z1,..., 2N, -..) -
For a generic constant M that is independent of N and T, and for some FJ°—
measurable function M, the followings hold:

(a) sup; r ||T Zt T1,it — Exl,it)H4 < M;
(b) sup; H% Z T2it — Exlit)”zl < M;
H > (30— Er, xS,it)‘ -

z;

< M.

(c) sup; <M, as.;

e

R
()Supz,T \/—Z (%,t .in$3,t) 4

Proof

We here use ¢ to denote the real number used in Assumptions 1-6, which is
strictly greater than 1.
Part (a)

Note that

1
f Z (fvl,it - Eﬂ?l,it)
t

IA

sup [|[z1,ie — Bl

27

4

IN

sup [|z1,it — Bty = Kay < 00,

Z7

where the first inequality holds by Minkowski’s inequality, the second inequality
holds by Liapunov’s inequality, and the last inequality holds by Assumption 2.
Choose M = k,,. R

Part (b)
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Let xp 2t be the ht" element of Zh,2,it- The required result follows if we can
show that

< M for all h. (41)
4
The proof of (41) is similar to the proof of Lemma 1 of Andrews (1991). This
proof relies on the following a— mixing inequality presented in Hall and Heyde
(1980, p. 278). Suppose that Y and W are random variables that are G—
measurable and H— measurable, respectively, with E [Y]” < co and E |W|? <
oo, where p,q > 1 with 1/p+1/¢q < 1. Then,

bup

\/—Z Th,2,it — EThoit)

|BE(Y — EY) (W — EW)| <8|Y|, W], [a(G, 1) /P70 (42)

where « (G, H) is the a-mixing coefficient between the sigma fields G and H.
Now, let X;; = 25,24t — Fp 2,4 Notice that

IA
£
3=
] =
[M]=
[M]=
[M]=
[S]
=
=
&

|E (X5t X 45 X 454Xt sph)|

IN
=
£
ie)

3~

|E (Xt (Xt Xitts+pXitts+pk))|

A
=
wn
=
3=
“M
N

0<p,k<s
0<p+k+s<T—t

B (Xt Xitrs) (XitrstpXittstpr)]
sy Y o

—EB (XitXit45) B (Xi t4s+pXit+stpth)
t 0<s,k<p
0<p+k+s<T t

+4! SUP 7 T2 > > |E (Xit Xit+s) B (Xi t4stpXittstpth)|
t 0<s,k<p
[)<p+k+s<T t

+4! SUP 77 Z Yo B ((XitXiprsXisrstp) Xiprstpti)]
t 0<s,p<k
0<p+k+s<T—t

= I+ I1I+1I1+1V, say.
By applying the inequality of (42) to X 1+sXi t+s+pXit+s+p+k and X; and
then by the Holder inequality, we have
I < 4'8SHP T2 Z D 1 Xitllag 1Xiersllag 1 X rstpllg

t=1 0<p,k<s<T—t

a1
X | Xt spie |4 i (8) 77
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4 T-1 s s
1 =1
< 418 (sup|th||4q> sup D> ai(s)T
o7 s=1 p=0 k=0
4 oo
2 9—-
< 48 (sup|Xit||4q> Z(S-‘rl) supa; (s) @ < M, (43)
it = i

where the last bound holds because sup; «; (s) is of size —3_17 (see Assumption

1
3(i)). By the similar fashion, we can also show that
4 oo
N a=1
IT,II1,1V < 418 <sup |Xit||4q> D (s+1)?supa(s) T <M,
it pr i

and we have all the required result. l
Part (c)

Let Yis = 2n 3,66 — E}-Zi Zh,3,;¢- Using the arguments similar to those used in
the proof of Part (b), we can show that under Assumption 4,

4
1
sup | — Y;

= a1
< 2M <S}1Tp|Y;t||4fzw4q> ZSQ (supale, (s) @ > a.s., (44)

s=1 g
a1
for some constant M. By Assumption 4(i), Y oo, s* sup; ar, (s) 7 <ooas.
g-1
Finally, since the terms sup; , ||Yit|\4fz_ 4q and D007, s?sup; ar, (s) 7 are Fpo-

measurable, we have the desired result by choosing

> a1
M, =2M (sup|Ygt|§-z_74q> Zsz (supa}-z’i (s) ) .
i T i ;

s=1 v

Part (d)
Again, let iy = 31t — EF, Tp 3. From (44) , we have

4
1
su EFl|— Y;
i,IP (ﬁ; t)
E|E ( L ZY)
= sup o it
, VT -

3, T

< omE |(sup Il )i (supaz, ()gq—l)]
< o[ (swp Vi, )} E{i_oj (swpa, ()51)}2 i
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for some finite constant M. But Assumption 4(i) and (iii) imply that the right-
hand side of the last inequality in (45) is finite. This completes the proof. B

7 Appendix B: Proofs of Main Results

Proof of Theorem 1
For the desired result, it is enough to prove that

{weQaz (G, H) (w)<z}eZ, (46)

for all € R. Since the partition II = {IIy, ..., II;, ... }of € generates the sigma
field Z, we have

sup (P2 (GNH)) (w) - (PzG) (w) (PzH) ()]

Geg, HeH
P(GNHNII P(GnNII;) P(HNII;
o1 Geg, HEH PTI; P11, P11,

where 1p, (w) denotes the indicator function that equals one if w € II;, and
otherwise equals zero. Let I = {1,2,...,4,...} be the set of positive integers, and

let
< a:}

I, = {z el sup
Geg, HEH

P(GNHNIL;) P(GNIL) P(HNIL)
PTI, PTI, PTI,

Then, we have (46) because

{weQaz (GH)(w) <z} =Ug,ll; e Z. 1

Before we start proving the lemmas and theorems in Section 4, we introduce
some additional lemmas that are used repeatedly below. Recall that w; =
(2 50> Th 415 T 44 z;)/ We also repeatedly use the diagonal matrix Dr defined
in Section 4.

Lemma 16 Suppose that Assumptions 1-8 hold. Define = = =1 + Zo, where

Fog 0o T'o231 I'2232
. ! .
1 = diag [ Ok, Okyys [ To231 T'siz1 Ts132 |, Okaqs Ok, | 5
/ /
1—‘22,32 F31,32 F32,32

[1]
|

Fe,oo Tene, 0 0 Teu, Lo, g, 0
/
F®1»®21 ley.0, 0 0 F@Qhﬂgz F9217H33 0
0 0 0 O 0 0
0 0 0 0 O 0 0
=2 = I T 0 0 Lg32,932 | R r
Otabtsa 21,432 +FH32 H32 +FH32 H32 9822
/
T
/ / 932,933 933,933
F@1a#33 F@211#33 00 =+ 1" “ +FH33 Has 933,%
32:H32 3H3
’
0 0 00 9g32,2 1—‘g33,z Fz,z
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Then, under Assumption 11, as (N,T — 00), the followings hold.
(a) % ZZ DT’UN)ﬂI);DT —>p =.
(b) supy 7 sup<;<y E | Drig||* < M, for some constant M < .
(C) \/—% 21 Drw;u; = N (E)\,O’%LE) .
(d) \/LN 21 DTQI)Z"[)Z‘ —>p 0.
Proof

Part (a)
To find the joint limit of

1 . 1 _ N _
N Z Dy, Dy = N Z Dy (w; — ) (w; —w) Dr,

we define
* —/ —/ —1 n .
Efw; = (EJ?LZ-,E.’EZ“E}‘H T3, 2 ) ;

i
_ _! —/ )
E*w = (Ex}, E%,, Ex 74,7 .

With this notation, we write
1
NZ Dy (w; — @) (w; — w) Dy
1 — * — * — * — * — —
= NZDT [(w; — Efw;) + (Efw; — E*0) + (E*w — )]
K3

x [(w; — Efw;) + (Efw; — E*w) + (E*w — w)]’ Dr

1
- NZ (Iiint+Ioi Nt + I3 87) (T NT+ 1o v+ T3 nT) 5 S8y
1

We complete the proof by showing the following;:
1 , -
N Z Il,iJVTIl,i,NT —p =15
i

1
! —_
~ E LTl N —p B2
1

I3 N7 — 0;

and
1 ! 1 ! 1 !
N;II,LNTIZ,LNTa N;Il,LNTI&NTv N;IZLNTI&NT_’PO'
Proof of (48): Write

1
N Z ILLNTILZ',NT
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(I1,1) (11,21 Iioo Iz Ii32 I1,33) 0

! /

11721 1-21721 I 90 I2131 I2132 12133
! !

11,22 1-21,22 Ip 99 I2231 Iz232 12233
! ! !

= I 31 Iy 31 Ioosy Isisi Isiz2 Isi32 0 |,

! ! ! !

11,32 121,32 122,32 131,32 132,32 132,33
! / / ! !

I1,33 121,33 122,33 131,33 132,33 I33.33
0 0 0

where the partition is made conformable to the size of
/ / / / / / n’
(xl,z’terl,itvaQ,it’ISl,it7x32,it’x33,z’tvzi) .

We now consider each element in >, I1 n717 ; yp- For I 1, notice that by

Lemma 15(a),

1 _ N N

¥ Z (1, — EZ1,) (Z1,, — EZ1y)
(3

< e Bal < 5 35 S e - Bl = 0, (1)

= N i 1,2 1,2 =N i T . 1,2t 1,it D .

Since each element in the diagonal matrix D7 tends to zero, we have

1
L, = N Zi:DlT (Z1,, — EZ1,) (Z1, — Efl,z’)/DlT
= DlTOp (1) DlT = 0p (1) .
Next we consider the second diagonal block of 4 Y-, I i nTI; N7 Define

Gir = \/T( Zo; — EToy > )

T3, — EF, T3,

QiT = QT -
Then, by Lemma 15 (b) and (d), for some constant ¢ > 1,

2 4
sup E||Qqr || = sup E ||gir||™ < oo,
i,T 0T

which verifies the condition (37) of Corollary 14. In consequence, from Corollary
14 and Assumption 8(i), we have

TZ (Z2,i— Eo) (T2, — EZa;) (T2,i— E%2,:) (%3~ Er., 75 ;)

— _ _ _ _ _ _ _ _ /

N £ ($37i_E]-'zi$3,i)($27i_E$2,i>l ($371—Efzi ZT3,) (96371‘—Efzil‘3 i)
(r2,it — Exait) (z2,it — Ex2,t)

x (22,15 — Exas) X (23,5 — E]:zix&is)/

1 1
x (29,5 — Erais) X (w3,is — Er,, 3,is)

_ 1 , .1 _ T Tz
= N;QZT —p IIJ{THWZEQZT = F/23 F33 )
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as (N, T — o0). Now, recall that

Dor = diag (Dair, Dazr) = diag (Ikzlv \/TIKM) ;

Dsr = diag (D317, Dsar, D3sr) = diag (\/Tfkgl, VT, (Tmh’33)h) ,
where 0 < my, 33 < % for all h =1,..., k,,. Therefore, as (N,T — c0),

0 0 0

Poo00 To231 T'a232
!

9931 T's131 I'sis2

I232 5132 D'sose
0 0 0

T5101 Ipr22 Izisi Ioisze Io133
100 Ina22 In23i In2sz 1233
a1 Igsy Isisi Isisze Isize | —p
Iy 30 ooz I3130 Is232 I3233
I5133 Inoss I3133 Iiess I3333

O OO OO
O O O OO

Finally, by the Cauchy-Schwarz inequality, the off-diagonal block component
( Lot Lo ©Lisi Lz Iiss ) — 0,

as (N, T — o0).
Proof of (49): Recall that

* = ! —/ =/ n'.
Eiw; = (El'L,L',Eil:Q,i,E]:zi :1:3714,22-) ;

_ —/ =/ = !
E*w = (Ex},ET,), Er 75,7 .

Write

I i NT
Dy (Efl,i — Efl)
EZo1; — EZo
0
= D37 ((Efzif:n,i - Efsl,z‘) — (Ef, T3 — ET31) + (EZ31, — Efsl))
Dsaor ((Efzii“sm — EZ33;) — (EF, 32 — ET32) + (ET3,, — ET3,))
D33t ((E}'zii'?)&i — EZ33;) — (EF, %33 — EZs3) + (EZ33, — EZ33))

Zi — 2

To obtain the required result, we use Lemma 12. By Assumption 6, as T' — oo,
we have

Iy N7 — I3 N a.s. uniformly in i, (52)
where
-F{lél,i
O21,
0
0
N =

Hss [g32,i (2i) — % > 932, (2i)] + Hsz Py, — ~ > Hgss
Hjs [933,2' (Zl) - % Zi 933,i (zl>] + Hss Hgss, — % Zi Fgss ;

%= N ik
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Write

1
i Z LoinTy; N

Iy Ihio;n 0 0 [Ilizp [Thjzz Il
Il oy Ilxi21 0 0 Iloize Iloizs Iloa.
0 0 0 0 O 0 0
1o 0 00 0 0 0 (53)
Il 39 IIy 49 0 0 Ilgps0 Ilzn33 Ilso,
117 34 1151’33 0 0 II§2’33 II3333 Il33,
I, I}, 0 0 IIéZz Ifég’z 1I, ,

By Assumption 7(i), as N — oo,

Iy Il lFe,o, Te e
: : : : . 54
( IILQl 1121,21 ) - ( 61,621 F@m,@zl ( )
By the weak law of large numbers (WLLN) and Assumption 7, as N — oo, we
have

II33 30 Il3233 Il3s,

I35 55 Il3333 Il33.
II:/,)Q,Z II§37Z 11, .

I—‘.1,132,932 + FM327M32 F932a933 + FN327M32 FQSQ;Z
/ /
- p Fg32,g33 + F/,L327M32 F9337933 + FH337H33 F9337Z . (55)
/ /
932,% 933,% 2,z

From Assumption 7 and WLLN with the assumption that Egsa ; (2;) = Egss; (2;)
= 0, it follows that

Iz Il133 Foypy,  Torug
: : : ) 56
< Il3132 Il133 o | INCYSUPTI IC VSR (56)

as N — oo. In addition, by WLLN with Assumption 5,

I, 0
( Iy . ) o ( 0 ) (57)

as N — o0o. The results (53)-(57) indicate that
1 —_
N Y DoinTy;x —p Ea, (58)
i

as N — oo. Finally, by Lemma 12, (52) and (58) imply (49).
Proof of (50): Notice that

2

1 1
E N ; DlT? ; (!El,z‘t - Effut)

41



- szE

DlTT ; 14 — Ex14t)

2

1
T Z (1,66 — Ex14t)

t

1
< —||Dir|?sup E — 0, (59)
N it

where the last convergence result holds by Lemma 15(a). Similarly, by Lemma
15(b),

1 1
— g Dopr— E (xok,it — Exo,it)
N - T -

2

1
< —supE

f > (wakit — Bxoir)|| — 0, (60)

for k = 1,2. Finally, by Lemma 15(d), we have

Z D3kTT Z T3k,it — Efzi-%'?)k,it)

t
2

2
< —sup

1 1
—D Fl|l— T3k it — FE XT3k
\/T 3kT T Zt: ( 3k,it Fay L3k, t)
— 0, (61)

for k = 1,2,3. The results (59), (60) and (61) imply that I3 y7 —, O.
Proof of (51): Notice that by (48) and (50),

2 2

1 1
(N Zi:fl,i,NT> Iy nr|| = N Xi:fl,z‘,NT s, n7l* = Op (1) 0, (1)

2 2

1 1 2
(N ;IQ,WQ Lnr|| =5 ;IQ,Z-,NT | s v ]|* = Op (1) 0y (1).
Thus, as (N, T — o0),

1 1
(N Zjl,z‘,NT) I;ILNT, (N ZIQ,z',NT> IéJ\/T —p 0.

We now consider the (k)™ term of ~ > LNt 15 N By the Cauchy-
Schwarz inequality,

1
(N Z I1,i,NTI§,i,NT>

< (% Z [(Il,i,NT)kf) (% Z [(IQ,i,NT)l]2> :
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where Ay and ay, denote the (k, l)th and the k" elements of matrix A and vector
a, respectively. In view of (48) and (49) (the limits of % =, It s n71{ ; yp and
~ 2i lainTIh ; np), We can see that all of the elements in % Y2, i N7 15 ; N
converge to zero, except for

1
N Z Dsor (T32,0 — B, Ts2.) (EF. 32 — Er, f32)l Dsar.

Thus, we can complete the proof by showing that this term converges in prob-
ability to a conformable zero matrix.
Let

Q1,7 = Dsar (T32,; — Efzif?,z,i) ;
Q2,i7 = D3ar (E]-‘zijiizi — Er, T32);

1 1
Q2,i = H3a <932,i () — N 2932,1‘ (zi) + Hgan: = N Zﬂggz,i> .

By the Cauchy-Schwarz inequality and Lemma 12,
2

2 Quir (@1~ Q)

1 1
< <ﬁ Xz: |Q1,z'T|2> (N Zl: Qi — Q2 |2>
< iE:HQ1 irl” ) sup Qi — Qi
< N i ; ! , ,
= 0p(1)o(1) =0,(1),
where the last line holds since
1 2
E (N ZZ: Q17| ) <M
by Lemma 15(d) and by Assumption 6. Thus,
1 1
§ 2 QuirQbir = 5 D Quir@h +0p (1) (62)
Next, notice that EQLZ-TQ’Q)Z- = 0. Then, by the Cauchy-Schwarz inequality,
) 2
E (N Z vec (QUTQ/zL))
2
= F

(% Z (Q2,; ® Ql,iT))

= 2 [F1Quil Bll@url]

1
~ N2 Z b (ng,iniQ/uTQl,iT)

1/2

IN
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By Lemma 15(d),
SUTPE Qi ]|* < M,

and by Assumption 6(iii) and (v),
E Q2" < M.

Thus,
1/2
EIQurl'] T 0,

= 2 [Pl

which implies
2

E

— 0.

(% Z vec (Q171‘TQ/27¢)>

By the Chebychev’s inequality, then, we have

1
N Z Q1,irQ%; —p 0,

as (N,T — c0). Finally, in view of (62) we have the desired result that as
(N, T — 0),

1
N ZQl,iTQIQ,iT —p 0.0

Part (b)
From (47) , we write

sup sup E|Dr (w; — o)|*
N,T1<i<N

= sup sup E |t + Lint + Lanr|*
N,T 1<i<N
4
SUpy 7 SUP1<i<N E Ll .
My | +supy rsupi<i<n E |12~ ) (63)
4
+supy rsupi<;<n E |13, 87|

IN

for some constant M;. Thus, we can complete the proof by showing that each
of the three terms in the right-hand side of the inequality (63) is bounded.
For some constant Mo,

sup sup F HIl,i,NT||4
N,T 1<i<N
sup; 7 B | Dir (21, — Ez1,)|
4
< M, +sup, r F H 1?/—2; \/T(ffzz — EZy,)

+sup; p £ HD%/:,—T\/T (73 — Er. T3.)

‘ 4
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By Lemma 15 and the definitions of Dyr, Doy, and D3y, each term in (64) is
finite. Thus,

sup sup E |7t < oc.
N,T1<i<N

Next, we consider the second term in the right-hand side of the inequality
(63). For some constant M3,

sup sup F|I; NT||
N, T 1<i<N
SUp N, 7 SUP1<i<N [Dir (EZ1,; — E@”l)H
+Supy 1 Sup <<y | ET21,i — EZ2 *
+Sllpl TE ||D3T (E]: 1‘3 i El’g z) H
+supy rsup <<y £ || Dsr (Er, 23 — Ez3)|*
+supy rsup <<y || Dsr (E%3,; — E963)H
+supy supy<;<ny £ ||z — Z”

< M

(65)

For the required result, we need to show that all of the terms in the right-hand
side of the inequality (65) are bounded. Notice that for some finite constant
M47

|Dir (EZ1,; — Ex1)||*

Hy (91,1' - %29171‘) ‘

< 2||Hil[sup||©1,
1

— (uniformly in ¢ as T — o0)

and
- _ 4
|1EZ21,i — EZo |
) 4
—  ||®21,i — N Z ©21,;|| (uniformly in i as T — o0)
< 2sup||®a1, < My
So,

sup sup ||Dir (EZ1; — Ez)|*, sup sup ||EZor; — EZoi||* <oco.  (66)
N,T1<i<N N,T1<i<N

By Assumption 6(iii), the followings hold uniformly in ¢ almost surely as T —
00 :

|Dorr (B, 21 = Brsra)|* — 0,
| Dsar (Br., Z31, — EZ31,) H4 — | Hsagsai ()"
HD33T (Ele_a_z‘gg,i — Efggyi) H4 - ||H33933,’L' (Zz)H4 :
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Notice that since ||D3T (Ey:zl_x&it - E.’Eg,it)||4 < 7(r ) G(z ) by Assumption

6(iv), we have sup; || Dser (Efzi T3k, — EZap,) ||4 (fol 7(r)* d”") sup; G ()"
for £ = 1,2, and 3. Therefore, by Lemma 10, we have

E||Dsir (Ex., Tsr,i — Esp,i) H4

1 4
93k,i (Zi)/ T3k (r)dr
0

< (ESIZ}P|93k,z‘ (Zz‘)||4> ( /01T3k (r)dr

where 731 () = 0. So,

—>E‘

(uniformly in )

4
) < oo, for k=1,2,3,

sup £ HDST (Efzij&i — Ei‘37i) H4 < 00. (67)

i, T

Similarly, it follows that

sup sup E|Dsp (Er.Ts — Bs,)|* < co. (68)
N,T1<i<N

In addition, notice that

sup sup |Dsr (EZs; — EZs3)||
N, T 1<i<N

D311 (EZ31,, — ET31)
sup sup Daor (E%32,; — EZ32) — Haafiy,, |, (69)

IA

N,T1<i<N ~
= D33zt E$33 i — E%33) — Hasfi,,, |
+sup sup stgsgl
N 1<i<N

H33p’933 i
By Assumption 6(v), as T — oo,

D3y (EZ31,, — EZ31)
sup sup Dsor (EZ32,; — EZs2) — Haafiy,,
N I<isN Dssr (E%33,; — EZ33) — Hsafig,, ,

N D31 (EZ31,; — EZ31 5)
1 _ _
= sup sup — Z Dsar (EZsz,i — EZ32,5) — Haa (Kgy, . — K,

N 1<i<N N 4
>t =1 — _
J Dssr (B33, — EXs3,5) — Has ( Hgay, — Hgas,
D311 (EZ31,; — EZ31,5)
< sup Dsar (E‘i‘32,i - Ei’32’j) — Hso Hgss; — ’u932,j — 0.
%]

Dssr (ETs3,i — ETs3,5) — Has ( fgas, — Hgas,
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Therefore, the first term (69) is finite. The second term in (69) is also finite since
sup; HM93271' , sup; H,ug337i|} < oo as assumed in Assumption 6(v). Therefore,

sup sup | Dsr (EZs; — EZ3)|| < .
N,T1<i<N

In addition, by Assumption 5,

sup sup Elz — z||* < co. (70)
N 1<i<N

Therefore, from (66) — (70) we have

sup sup F HIQ%NT||4 < 0.
N, T 1<i<N

Finally, since I3 y7 = % Yol NT,

sup B || I3 v *
N, T

4
1
?\}15E (N Z; ”Il,i,NTl) (by triangle inequality)

<

< sup sup E|;n7|* (by Holder’s inequality)
N,T 1<i<N

< oo. W

Part (c)
Recall that under Assumption 11, conditional on F,,, u; is independently
distributed with mean ﬂ\'/%)\, variance 02, and x* = Ex, (u; — EF, u¢)4 < 00,

where ) is a nonrandom vector in R*+9. So, E (Dpw;u;) = ﬁE (DT’LZJﬂI);DT) A

Define Q; r = Drw; (u; — Ex,u;); and let ¢« € RE¥T9 with ||| = 1. Then, we
can complete the proof by showing that as (N, T — o0),

\/LN Z dQir = N (O, O’iL/EL) . (71)

This is so because this condition, together with the Cramer-Wold device, As-
sumption 11 and Part (a), implies that

1 = L 0 Er i+ —— ST 0,
\/_N ZZ: Drw;u; = \/N Z:DTwZEfwul + \/N ZZ: QZ,T

1 . 1
= N Z DTwiwgDT)\ + \/—N Z Qi,T

= N (EX0.5).
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Now we start the proof of (71). Let s7, = E (VQix)? and Sk =

2
i 55,1
Under Assumption 11, we have

Sr = E(Qir)
= VE|(Ex, (wi - Br,u:)") Drivsi; Dr|
= 02E[/DpwabDri].
By Part (a),
% > /Dy Dyt — 2> 0,
7
as (N, T — o0). By Part (b),

sup sup E ||/ Dyig||* 1{||/ Dy;|| > M} — 0,
N, T 1<i<

as M — 0o, and so ||/ Dpi;||” is uniformly integrable in N, T Then, by Vitali’s
lemma, it follows that

NS?V’T — 02/Z1 >0,
as (N,T — o0). Thus, for our required result of (71), it is sufficient to show
!/
ZLQ”’:HV(O 1), (72)
SnT

as (N, T — oo) Let P n1 = L/Q—T . Note that, under Assumption 9, E (P; n7) =

0 and Y, EP yp = 1. Accordlng to Theorem 2 of Phillips and Moon (1999),
the weak convergence in (72) follows if we can show that

ZE “nrl{|PPnp| > e} — 0 forall e >0, (73)

as (N, T — o0). Since

sup sup E Qi
N, T 1<i<N

ll*sup sup B (IDral' (Ex, (wi - Er,u)'))
N, T 1<i<N

IN

IN

kisup sup E || Dry|* < oo,
N,T1<i<N

the Lindeberg-Feller condition (73) follows, and we have all the desired results.
u

Part (d)
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Since v; is independent of w;, we have

2 2

1 1
v 2 v 2

2 1
_ %tr (NZEDT@@;DT
oy -2
< ZEsup sup F|Drw|” — 0,
T NTi<i<N

as (N, T — oo), where the last convergence holds because Part (b) warrants

sup sup E||Dpig||* < co. B
N, T 1<i<

Proof of Lemma 2
Part (a)
By definition, we have

1 1
NZ?ZGZT (it — %) (vt — 33) Gar
P
1 1
= NZTZGJL‘T (it — Eivie + Bivy — EiZly + B2 — %)
PR
X (zit — Esxi + Bivy — BT + BTy — fi)/ Gar,

11
— szz (IITy jp+IT L p+ 11 T3 i) (I yr+ 1T T p+I1 15 7), say.
i t

First, we show that

1 1
— — IIL ,rIII
PSR

D1 (21,6 — Ex1.00) \ { Dir (1,60 — Ex1,0t)
= N E g o4 — B0t ot — Exo

23,4t — T3 4t x34t — B3 4
0 0 0
= | 0 By @ |. (74)
0 By Pss
For this, set
1 Dir (z1,it — Ex14t) Dir (21,0t — Ex14t)
Qit = = Z T2 it — E$2,it T2it — E$2,it

T

t 23,5t — B34t 23,5 — B3t
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By the Cauchy-Schwarz inequality,

2
2
1 Dir (z1,06 — Ex1.4t)
T E T2t — B0 it

t 234t — LT3 4

1 D17 (21,8 — By i)l + |26 — Broel*
! )

1Qir|)?

IA

+ i — Exs i
Notice that by Assumptions 2(i), 3(iii),

sup I ||21,it — E$C1,it||4 , sup E'[|wg — E3?2,z‘t||4

(75)
it it
and by Assumption 4(iii) and Assumption 6(iii),
sg})E lzs,it —
4 4
< M1<‘, ) EF. 3| >+M1EHEfzi 3,it — Exg |
< 0. (76)
Thus, we have
bupE ||Q1TH < 00.
From this,
sup; 7 B || Qir||”
sup E || Qir || 1{[|Qir[| > M} < ZTTl — 0,
i,T
as M — oo. By Corollary 14 and Assumption 8(ii), then,
1 1
~ > - S IIL T i
i t
1 1 0 0 0
= NZQZ'T —p %%NZEQJZ 0 ‘I’lzz Do3
i i 0 @23 (I>33
Next, by Assumption 6(i) and (ii), Lemma 11, and Lemma 12, we have
1 1
~ > T > L IIT i
i t
Dir (Exy it — EZ1 ;) \[Dir (Ex1,it — EZ1;)
= NZ TZ Ezo i — E-’?Q,i Exo 4 — EZo
7 t El‘37it — E$371‘ E$3 it — Exg i
fol (Tl - le) (th % > @1,1'@171-) (7’1 d’r‘ 0 0
— 0 0 0] .(77)
0 0 0
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In addition, we have

11 )
|+ Z = Zt: 13,711,

1 1 D17 (21,56 — Exyit) g
= F ¥ Z T Z (2,44 — Exait)
i t (3,44 — Exgit)
4
1 1 Dir (21,06 — Ex1.41)
< m Z f Z E (33271‘15 - Exz,it)
i t (3,40 — Exs3 1)
— 50, (78)

as (N, T — o0), as shown in (75) and (76). Thus,
11 .
v > T > I 11T i =, 0.
i t
From the Cauchy-Schwarz inequality, (74), (77) and (78), we have
11 ) I1 ,
szz IIT G IIT . — 05 szz II1 I 1T, o — 05
Pt Pt
1 1
NZTZ LIl 0 — 40,
Pt
as (N, T — o0), Combining all of these, we have
1 1 _ N
~ Z T Z Gor (Tit — T4) (Tie — &) Gar
i t

fol (’7’1 — le) (th % ZZ @1)1'611,1') (7'1 — fﬁ)/dr 0 0
0

- p Boy  Po3
0 Dhy D33
= U,
as (N, T — 00).
Part (b)

First, let Q;r = ﬁ > Gar (i — Ti) vig; and let ¢ € R* with ||¢|| = 1. If
we can show that as (N, T — o0),

1 / 2.7
— UQir = N (0,050 Uye), 79
then, the Cramer-Wold device implies our desired result. Now let 5127T =
E(/Qir)” and S%, = ;5. Using similar arguments for (74) — (78), it

o1



is possible to show that

1 1 1 _ _
NSJQVT = UgblE <N Z T Xt: Gar (l”z't - l’z) (itit - $z‘)/ GIT) Lk
— 02U, >0, (80)

as (N, T — o0). So, the asymptotic normality in (79) holds if
/ .
ZLQ—“T:N(O,I), (81)

as (N,T — o). Let P yy = %22 Then, E (Pnt) = 0 and Y, EP2yp = 1.
Thus by the central limit theorem of the double indexed process (e.g., see
Theorem 2 in Phillips and Moon, 1999), we can claim that (81) holds, if we can
show that

ZE PNl {|Pinr| > e} — 0 forall e >0, (82)

as (N, T — o0).
Now, in view of (80), condition (82) holds if

4
sup E ||/ Qs.r||* < sup E||Qs.r||* < 0. (83)
i, T i, T

Note for some constant M7 that

4
sup B [|Qi,7||
i,T

4
= S:leE \/— Z Gx T xzt ) Vit
1 Z ( Gx,T (xzt - fi) (zis - ji)l gx,T )
5 _ _
= supkFE |tr T oo QGe1 (Tip — Z;) (Xig — Ti) Gar
T ,8,D,
‘ L x B (vitvisvipviq) ]

1 Gor (Tit — ;) (x5 — z;) Gar
M, sup E <T2 ZS tr <®Gz 7 (Tt — ) (@5 — T3) Gayr

IN

i,T
( Vit Vi )
(xzt xz) (-ris - fi)/ GI,T
+ M7 sup ®Gm 1 (s — T;) (24 — 3_71')/ Gar
o xFE ( Vi U; )
($zt — T ) (-Tlt - xz)/ x, T
+ M sup ®Gm 1 (Tis — T) (245 — fi)/ Gar . (84)
o ><E( VU] )
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Using the fact that tr (A ® B) = tr (A) tr (B) and the Cauchy-Schwarz inequal-
ity, we have

x,T xzt - xz) (xis - ji)/ Gac,T
T2 Z Zt ( ®G3c T xzt - xz) (xis - fi)/ Gac,T

= ﬁ Z Z {t’f‘ [GI,T ($it - fz) (IEZ'S — fi)l GTvT] }2

2
1 _
= |7 Z 1Ger (zit — 961)||2] .
t
Similarly,
x,T xlt -’fz) (xis - jji)l GT,T
T2 Z Zt ( ®Ga: T l’zs - -Tz) (xit - ji)/ GT,T
) 2
< |F 2 Gar (it — xi)n?] :
t
and

DI ( s e )
2
= ( Ztr -’Ifzt — xl) (a;it — i‘i)/ Gw,T))
1 2
T Xt: |G, (it — fz‘)|2] :

Thus, the right hand side of (84) is less than or equal to

2
1 _
T D NG (i — sz‘)HQ] -
t

3M; /ﬁﬁ sup sup F

i, T 1<t<T
Note that

1 2
sup sup F | = GTI-—f-2
z’JP1gf,£T TZt:H o1 (Tit Dl

1 2

< sup sup F|= Gorait 2

0T 1<t<T TZt:H |

IN

4 4
M, (SUPi,T supy <;<7 B | D171 ,it]|” + sup; ¢ SUP41§t§T E |zl )
)
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for some constant Ms < co. By Assumptions 2 and 6(i), for ¢ = [T'r] and finite
constant M, we have

3, T 1<t<

sup sup My (||D1T\| B~ Bavad)l* + | Dir Bevall!)
% 1<t<

IN

— sup sup |71 (r)@l,i < 0.

t rel0,1]

Next, similarly, by Assumptions 3(ii) and (iii),
sup Sup E ||o, th < sup sup My [EH:CQ it — B Zt|| +|| Bz it }
1, T 1<t< <t<T

<oo,

and by Assumptions 4(ii) and (iii) and 6(iii) and (iv),

IN

4
sup sup E ||z3,q" sup sup Ms (E |36 — Br. 3.l + HE$3,itH4)
i T 1<t<T 0T 1<t<T

B (SuPit 3,0 — Efwx?”“W)

4
< M +supZtE||E_7-‘ 3,0t — E$3,it||
+sup, , || Ers il
< oo.
Therefore,
2
1 2
sup sup F |— Gar (it — T <M,
up sup th:” 1 (T3 )|]
which yields (83). B
Part (c)
By Lemma 16(a). B
Part (d)

By Lemma 16(d). ®

Proof of Lemma 3
By Lemma 16(c). B

Proof of Lemma 4
Write

1 . 1 ~ 1 SO
N > DTwiui:N > Drw; (ui — Ex, u;) +<ﬁ > DTwiw;DT> A (85)
Notice that by Assumption 10,

E < ’(U

ZiDT{E’L( U Efwuz)

2 o2 1
'N ) = 2etrE (N ) DTﬁiﬁ);DT) .
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But, by Lemma 16(b),
1 -
trk <N Zi DTwiwgDT> <M,

for some constant M. This implies that

2

1 ~
HN Zi DTwz ( Uq E]:wul) - Oa
as (N, T — o0). Thus, by Chebyshev’s inequality,
1 ~
N ZZ DTwi (ul — E].‘wui) —p 07 (86)

as (N,T — 00). Then, Lemma 16(a), (85) and (86) imply our desired result. B

Proof of Theorem 5
By Lemma 2(a) and (b). Bl

Proof of Theorem 6
By Lemma 2(c), (d), and Lemma 3. W

Before we prove the rest of the theorems given in Section 4, we introduce
the following notation:

Ay N DT, T o (@i — i) (wir — 24) 5
Ay = N i1 T 2t (xzt z;) (vit — 51)%

Az = % Zz i’@/ Ay = {V Z Tty As = Zl Z;0;; (87)
B3 = % 121227 B4 = Z Zzulv Bs = N Zz Z;0i;
IS

= A3 - CB;'C; F2 A4+Ar—CB§ (Bs+ Bs).

Proof of Theorem 7 .
Using the notation given in (87), we can express the GLS estimator 3 4 by

VNTG; L (B, - 8)
= [GorAiGor + 02.Go.r {4; - 03510'} e
XVNTG,r{As+ 07 [(As + As) — CB; ' (Bs+ Bs)|},  (88)

where 07 = (/02 /(T2 + o2).
Part (a)
First, consider

035G {As —CB;'C'} G r
= 07G.1D, { ~(

—1
XDQC7TGJ;,T.

-1

~ > D ri; 5:’Dg; T }
& i Dari]) (§ $i58) " (3 1 268 Do)
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By Lemma 2,

{ =3 D%Tj:ifc;D?T
- (% Zi DraTjiézl‘) (% Zi 215:)7 (% Zi éiféDraT)

and by definition,

b=0,0,

GerDyp = Jor=0(1),
as (N,T — o0). Thus,
053Gy {As — CB5'C'} Gor = 0, (07) = 0, (1). (89)
Next, consider
VNTG, 1 {07 [(As+ As) — CB; " (By+ Bs)] }
> Dy (W + ;)
= QQTﬁGw,TD;%F 1 ~\/~N/ 1 AN S (7 ~ :
, _ (W Zz D,;’Txlzl)(w Zz ZZZZ) (W Zz Zi (Uq + Uz))
By Lemma 2, under the local alternatives to random effects (Assumption 11),
L SR | - = .
_ (% Zz Da;,TxiZZ{)(% Zz ZZZ;) (ﬁ Zi Z (’UJZ —+ Uz')) p

By definition,

_ 1
03VTG, D, % = O <\/_T> :

Thus,
VNTG,1 {05 [(As + A5)—CB3 " (Bs + Bs)] } :0&%) =0 1).  (90)
Substituting (89) and (90) into (88), we have
VNT(B, ~B) = [GorAiGar +0,(1)] L VNT Gy Az + 0p(1)]

— VNT(B,, — B) +0,(1).

The last equality results from Lemma 2(a), (b) and Theorem 5. B
Part (b)

Similarly to Part (a), we can easily show that under the assumptions given
in Part (b), the denominator in (88) is

1
WZZGx,T (24t — Z4) (wir — %) G + 0, (1). (91)
it
Consider the second term of the numerator of (88):

2
0 \/TGQC,T { - (% S 5@5;)(% > 21-22)*1 Nt > i Zi (Ui + 171)) } ' (92)



Notice that by Lemmas 2 and 4, under the fixed effect assumption (Assumption
10), the first term of (92) is

0>V N TGyr— Zwl Ui + U;)

= 0>V/NTG, TDzTNZDI & (Ui + U;)

= 02\/NTG$7TD;,T {EzA+o0p (1)},

= =
_ —rxr —xz
- = =

—zr —zz

conformably to the sizes of x;; and z;, and set =, = (4, Z4.) . Similarly, by
Lemmas 2 and 4, under the fixed effect assumption, the second term of (92) is

03VNTG, 1D, (% Z DLT@E;( Z 7 ) (% Z Z (@ + v))

= 02VNT TGrD,p {EeB)EcA 0, (1)}

where we partition

(1]

Therefore, the limit of (92) is

(H%WGI,TD;}F) {( = _= =1z )A+op(1)] :

TT umz*—dzz —zT

Recall that it is assumed that % — ¢ < 00. Also, recall that under the restric-
tions given in the theorem, G, v = diag (Ij,,, Ii,) and Dy v = diag (\/Tszz , D3T> .
Then, letting Amax (A) denote the maximum eigenvalue of matrix A, we can have

Amas (3VNTG D )

| N 1 _
= O (1) T}\max <ﬁlk22’ D3111> — 0.

So, under the assumptions of Part (b), the probability limit of the numerator
of (88) is

1 O
INT Xl: Xt: G, 7%t Vit + 0p (1) . (93)
Combining (91) and (93), we can obtain Part (b). B

Proof of Theorem 8
Using the notation in (87), we can express the GLS estimator Yg by

rYgiﬁ)/
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-1

1
= B30/<9—2

-1
A+ A3> C
T

1 !
(Bs+Bs) - C' (02 Ay + A3> <0—2A2 + (Ag + A5)) - (94)
T T

Part (a)
Notice that

1
C’ (%Al +A3) C
T

= ClDw)T < 02

1
VT 7GerAGoqrderVT + Dy AsD, T> D, rC

— T9%(C'D Jor GoriGar = Dy1C
B (O Do) 75 VT \;—TD TA3DwT\/— ﬁ( 570)

o\
= 0p< 0 >_o,,(1).

The third equality holds because the limit of G, 741G, 1 is positive definite
(by Lemma 2(a) and Assumption 12), T3 = O(1), and

D, 1C, GorA1Gyr, DerAsDyr = O, (1)
(by Lemma 2(a), (c)). The last equality results from the fact that
Jor
2 =0(1).
vr =W
Thus, as (N, T — o0), the denominator of (94) is

1 —1
B3 — c’ (0—2141 + A3) C=Bs+ Op (1) . (95)
T

Next, under both the random effects assumption (Assumption 9) and the
local alternatives (Assumption 11), it follows from Lemmas 2 and 3 that the
second term in the numerator of (94) is

1 i
o4 <?A1+A3) <0—2\/NA2+ VN(A4+A5))
1 —1
= C'Dyr <T_02 VTJo17Ge 7 A1 Gy JorVT + Dw,TASDw,T)

T
x (T—\/Q_QJJ;,T\/NTG%TAQ +VND,r(As+ A5)>

o8



—1

J Joh Jo\
= TO*(C'Dyrp) 2L | GprAGor + 2L D, pAs Dy p—2t
( ,T)\/T<,T1/,T\/T,T3,T\/T
—1

1 It
x | —VNTG, 2L /ND, 7 (As+ A
(e 00

o) er) _ 1
p ﬁ _017()7

as (N, T — o0). Also, by Lemma 2(d), as (N, T — o0),

vVNB — ZiU; = 0p (1
5T \/N p( )
Therefore, the numerator of (94) is

VN <B4+Bs) e ( = A1+A3>_<9i2,42 4 (A4+A5)>>
T T
= VNBy+o0,(1), (96)

as (N, T — o0). In view of (94), (95) and (96) , we have

- (15 ()

as (N, T — o).
Finally, by Lemma 2(c) and Lemma 3, as (N, T — o0),

. = 1 .
\/N (79 - - (N Z /> (ﬁ Z Ziuz')
= N (@E) T eEN, @EL) ),
as required. W
Part (b)
Under the assumptions in Part (b), as shown for the denominator of (94),

1 -
Bs;—C' (@Al + A) C = NZZZZ + 0, (1) =, ILEL,, (97)
as (N,T — o0) . Next, consider the numerator of (94),

1 1
(By+ Bs) — ' <0—2A1 + As) (0—2142 + (As+ A5))

= (Bys+ Bs)
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. 2 l Jﬂc_} J_l
T6 (C Dac,T) \/T Gac,TAlGa:,T +

T TN
LDQC AsD, I
JT o ’T\/T>
(=L VTG s 1 2T D (s 1 A
VNT6? V.
By Lemma 2(d), (b), and (d),
B5 = Op(l)a
VNTG, 1Ay =

D, 1As

= OP (1)7
= 0,(1),

respectively. Under the fixed effect assumption (Assumption 10), Lemma 4
implies that

D, 1Ay =0,(1),
as (N, T — o0) . Since

1 Jor
e e = o),
VNTO7 T
and
T6* (C'D )J‘”_; G.1AG +J‘”_%FD AsD AN (1)
x ’ x x —F=1 P =0
,T \/T 7T‘ 1 7T‘ \/T 7T‘ 3 ,T \/T P
(as shown in Part (a)), we have

But, according to Lemma 4,

(Bs+ Bs) — C’ (9—12A1 + Ag) - (9—12A2 F(Aat A5)> — Bi+o,(1). (98)

1 -~ =
By = N ;zlu, —, L2

(99)
Therefore, (94), (97), (98) and (99) imply

Ay —p 7+ (LEL) T LEA,
as (N, T — o0).
Proof of Theorem 9
Using the notation in (87), we can express the Hausman test statistic by
— !
HMyr = [(A1+03F) " VNT (4 + 03 ) — A7 VNT A,
1 2 -1771
X [agA; — 02 (Ay + 0% ) }
x| (A1 +63F) " VNT (A + 03 F) — AT'VNT 4o .
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Observe that for any conformable matrices P and @, we have
(P+Q) ' =P '=-P QP ' +(P+Q) QP 'QP .
Using this fact, we write
(A1 4+ 62F) " — A7t = 02 AT P AT + 04Ry, (100)
where Ry = (A1 + 92TF1)71 FlAlelAfl. Define

Q= (A +63F) " VNT (As + 63F,) — AT'VNT As.
Then,
Q
(A1 + 02F1) " VNT (As + 02F,) — AT'WNT (Ag + 02.F)
+AT W NTO3Fy
{(A1+03R) " = AT} VNT {4s + 3 B} + AT VNTOLFy
(07 F) ATVNT { Ay + 07 Fy ) + AT'WNTOLF,
07 RIVNT { Az + 05>}

— RVNTA PA A AT R 03NT| AT AT
T L ! TV 02 Ry {4y + 035}

= —05VNT [A]'Fi AT Ay — AT F] — 07V NTR,, (101)

where R2 = A;lFlAleQ — R1 {AQ + G%FQ} .
In view of (100) and (101), we now can rewrite the Hausman statistic as
1241 2 2 -1t
HMyr = Q [a ATY = 02 (A + 02F) ] 0
= OpVNT [AT LA Ay — ATV R + 02.R,]
x [02 AT FLAT — 0262 R,]
x0rVNT [A7 FLAT Ay — ATy + 05.Rs) 5
or equivalently,

HMnNT

_ gy | G (ke FiDar I 3) GiGar s |

—GrJ, ;Do rFa + 607G, 1 Ry

x 0261 (JohDar Do 1 1) G+ 0203 (G RaGLE )|

Gy (4 Der FiDar I k) GrGar Ay

XHT vVNT 1 2 1
-Gy Jx,TDx7TF2 + OTG$7TR2
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—1 g-1/-1
where G1 = G 1A G 7.
Notice that

0 (GAmGLE) = GGk (A +eR) Gk
XGm,TFle,TGlG:C,TFlGI,TGl~
Lemma 2(a) and Assumption 12 imply

G1=0,(1).
In addition, by Lemma 2(c)
GorFiGor = Jy 1 Do r Fi Do rJ 1 = O, (1), (102)
since J;; = O(1). Thus,
0207 (GIERIGLE) = 0, (67) = 0, (1), (103)

Now, consider

00V NTOTG, Ry
= VT [\/N(;?TG;}T (AT'FLATF) + VNOLG Ry (Az + 02TF2)]
o [P (G AT G )G G (G AT G ) G VN |
- T

+03 (GohRiG 4 ) (VNG Ao + 63V/NGo i Py )

Under the local alternatives (Assumption 11), we may deduce from Lemmas 2
and 3 that
Gla GmTFl z, T :CT\/_F2 1)

0 (GrhRaGrl ) . VNG Az = 0, (1),
Since O7v/T = O (1), we have
0V NTOTG Ry = O (1) [070, (1) + 0, (1)] = 0, (1). (104)

Using the results (103) and (104), we now can approximate the Hausman
statistic as follows:

HMunr

0 _ -~ _ /
= LVNT [(J 3 Der FiDa I3 ) (GrGairAs) = J; kDo Fa + 0, (1)]

Ty
—1
X (J;;D%TFle,TJ;,} +o, (1))

0 _ . .
xLVNT |(Joh Do FiDar ;1) (GiGoirAz) = 7 b Do Fa + 0y (1)
v

0 .0
= U—T\/NT(Dz,TFQ)’ (DarFiDyq) ' Z5V/NT (Do 0 Fy)

v

+op (1)
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Here, the last line holds because under the local alternative hypotheses,
JyrDerFiDy 2 J 1 =0, (1),
by (102), and
%Gl (VNTG,.r45) = 0, (0r) = 0, (1),

by Lemma 2(a), (b) and Assumption 12.
Finally, by Lemma 2(c), as (N,T — o0),

DyrF1 Dy 1
- Dac,TABDgc,T - Dx,TCBg_lchm’T

1
= = DuriiiiDar
N A

—1 /
< ¥ Z D, riiZ ) ( ~ zz) (% >, Dx,Tazizl‘)

o
= pZar — Zz22,, Sax > 0.

Also, Lemmas 2(d) and 3 imply that under the local alternative hypotheses, as
(N,T — o0),

VND, 1F,
- \/NDI)TALL + \/NDw7TA5 — Da;’TCBg_l\/N(B4 + B5)

As (N, T — c0), Z—:\/T — —=—. Therefore, under the hypothesis of random ef-
fects,

HMyr = X3,

a x? distribution with the degrees of freedom equal to k. In contrast, under the
local alternative hypotheses,

HMnyr = X; (1),

where 7 is the noncentral parameter.
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