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Abstract

This paper examines the asymptotic properties of the popular within,
GLS estimators and the Hausman test for panel data models with both
large numbers of cross-section (N) and time-series (T) observations. The
model we consider includes the regressors with deterministic trends in
mean as well as time invariant regressors. If a time-varying regressor
is correlated with time invariant regressors, the time series of the time-
varying regressor is not ergodic. Our asymptotic results are obtained con-
sidering the dependence of such non-ergodic time-varying regressors. We
find that the within estimator is as efficient as the GLS estimator. Despite
this asymptotic equivalence, however, the Hausman statistic, which is es-
sentially a distance measure between the two estimators, is well defined
and asymptotically χ2-distributed under the random effects assumption.
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1 Introduction

Panel data refers to the data with repeated time-series observations (T ) for
a large number (N) of cross-sectional units (e.g., individuals, households, or
firms). An important advantage of using these data is that they allow re-
searchers to control for unobservable heterogeneity, that is, systematic differ-
ences across cross-sectional units (e.g., individuals, households, firms, coun-
tries). Error-components models have been widely used to control for these
individual differences. These models assume that stochastic error terms have
two components: an unobservable time-invariant individual effect which cap-
tures the unobservable individual heterogeneity and the usual random noise.
The most popular estimation methods for panel data models are the within and
the generalized least squares (GLS) estimators. For the panel data with large
N and small T , the appropriate choice of estimators depends on whether or not
regressors are correlated with the unobservable individual effect. An important
advantage of using the within estimator (least squares on data transformed into
deviations from individual means) is that it is consistent even if regressors are
correlated with the individual effect. However, a serious defect of the estimator
is its inability to estimate the impact of time-invariant regressors.1 The GLS
estimator is often used in the literature as a treatment of this problem, but it
is not without its own defect: The consistency of the GLS crucially depends
on a strong assumption that no regressor is correlated with the effect (random
effects assumption). Use of the estimator thus requires a statistical test that
can empirically validate this strong assumption. A Hausman statistic (1978) is
commonly used for this purpose (e.g., Hausman and Taylor, 1981; Cornwell and
Rupert, 1988; or Baltagi and Khanti-Akom, 1990).
In this paper, we study the asymptotic properties of the within, GLS esti-

mators and the Hausman statistic for a general error-components model with
both large numbers of cross-section and time-series observations. The GLS esti-
mator has been known to be asymptotically equivalent to the within estimator
for the cases with infinite N and T (see, for example, Hsiao, Chapter 3, 1986;
Mátyás and Sevestre, Chapter 4, 1992; and Baltagi, Chapter 2, 1995). This
asymptotic equivalence result has been obtained using a naive sequential limit
method (T → ∞ followed by N → ∞) and some strong assumptions such as
fixed regressors. This result naturally raises a couple of questions regarding the
asymptotic properties of the Hausman test. Firstly, the Hausman statistic could
be viewed as a distance measure between the within and GLS estimators. Then,
does the equivalence result indicate that the Hausman statistic should have a
degenerating or nonstandard asymptotic distribution under the random effects
assumption? Secondly, does the equivalence result also imply that the Haus-

1Estimation of the effect of a certain time invariant variable on a dependent variable
could be an important task in a broad range of empirical research. Examples would be the
labor studies about the effects of schooling or gender on individual workers’ earnings, and
the macroeconomic studies about the effect of a country’s geographic location (e.g., whether
the country is located in Europe or Asia) on its economic growth. The within estimator is
inappropriate for such studies.
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man test would have low power to detect any violation of the random effects
assumption when T is large? This paper is concerned to answer these questions.
The analysis of panel data with both large N and T becomes increasingly

important in the literature. While a variety of estimation and model specifica-
tion testing techniques have been introduced and proposed in the panel data
literature, most of these methods are limited to the analysis of data with large
N and small T . An obvious reason for this limited approach is that most of
the available panel data have only a short history. However, panel data with a
large number of time-series observations have been increasingly more available
in recent years in many economic fields such as international finance, finance, in-
dustrial organization, and economic growth. Furthermore, popular panel data,
such as the Panel Study of Income Dynamics (PSID) and the National Longitu-
dinal Surveys (NLS), contain increasingly more time-series observations as they
are updated regularly over the years. Consistent with this trend, some recent
studies have examined the large-N and large-T properties of the within and
GLS estimators for error-component models.2 For example, Phillips and Moon
(1999) and Kao (1999) establish the asymptotic normality of the within estima-
tor for the cases in which regressors follow unit root processes. Extending these
studies, Choi (1998) considers a general random effects model which contains
both unit-root and covariance-stationary regressors. For this model, he derives
the asymptotic distributions of both the within and GLS estimators. These
papers however do not consider the asymptotic properties of the Hausman test.
The general model we consider in this paper is different from the models

considered by these studies in two ways. First, our model contains the time-
varying regressors that are serially dependent and heteroskedastic over time with
or without time trends. These variables could be cross-sectionally heteroskedas-
tic or homogeneous. Second, our model contains time invariant regressors that
are correlated or uncorrelated with other time-varying regressors. If a time-
varying regressor is correlated with time-invariant regressors, the time series
of it is non-ergodic because the influence of the time invariant random regres-
sors is persistent in all time periods.3 However, under the assumption that such
time-varying regressors satisfy mixing properties conditionally on time invariant
random regressors, we can derive the limiting distributions of various forms of
sample averages of panel data when bothN, T →∞. These intermediate results
are used to establish the asymptotic distributions of the panel data estimators
and the Hausman test.
Most of the asymptotic results derived in the paper hold as N,T → ∞

without any particular sequence. In addition, we do not make any assumption

2Some other studies have considered different panel data models with large N and large
T . For example, Levin and Lin (1992, 1993), Quah (1994), Pesaran, Shin and Im (1997),
and Higgin and Zakrajsĕk (1999) develop unit-root tests for data with large N and large T .
Alvarez and Arellano (1998) and Hahn and Kuersteiner (2000) examine the large-N and large-
T properties of generalized method of moments (GMM) and within estimators for stationary
dynamic panel data models.

3The time series of the panel data considered in Phillips and Moon (1999) is also non-
ergodic. However, in their paper the non-ergodicity arises due to stochastic trends generated
by unit root processes.
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about the relative sizes of N and T . Previous studies of nonstationary panel
data typically assume that T is relatively greater than N . Differently from these
studies, our approximation theories can apply to any panel data set with large
N and large T regardless of their asymptotic ratio.
The main findings of this paper are as follows. Consistent with the pre-

vious studies, we find that the within and GLS estimators (of coefficients on
time-varying regressors) are asymptotically equivalent. Nonetheless, the Haus-
man statistic is asymptotically χ2-distributed under the random effects assump-
tion. This seemingly contradictive result can be explained by our finding that
the differences between the within and GLS estimators converge in probabil-
ity to zeros much faster than the two estimators converge in probability to
the true values of coefficients (at the same speed). For example, for a sim-
ple model with a no-trend time-varying regressor, we find that the within and
GLS estimators (of the coefficient on the only time-varying regressor) are both√
NT−consistent and asymptotically normal. In addition, the two estimators

are
√
NT−equivalent in the sense that the difference between the two estima-

tors is op(1/
√
NT ). However, we also find that the difference is Op(1/

√
NT 2)

or Op(1/
√
NT 3) depending on whether data are cross-sectionally heteroskedas-

tic or homoskedastic. This implies that the within and GLS estimators are not
equivalent in the orders of

√
NT 2 or

√
NT 3. Furthermore, it is shown that un-

der the random effects assumption, the differences between the within and GLS
estimators are asymptotically normally distributed. From this, we show that
the Hausman test statistic is asymptotically χ2-distributed. In addition, our
analysis under a series of local alternative assumptions indicates that the Haus-
man test retains power to detect violations of the random effects assumption
even if T →∞.
This paper is organized as follows. Section 2 introduces the panel model of

interest here, and defines the within, GLS estimators and the Hausman test.
For several simple illustrative models, we derive the asymptotic distributions
of the within estimators, the GLS estimators, and the Hausman test statistic.
We show that the convergence rates of the estimators and the Hausman test
statistic are sensitive to the unknown data generating structure. Section 3
defines a conditional α-mixing coefficient. Using this, we propose a conditional
α−mixing process and discuss its properties. In Section 4, we provide our general
asymptotic results. Concluding remarks follow in section 5. All the technical
derivations and proofs are presented in the Appendix.

2 Preliminaries

2.1 Estimation and Specification Test

The model under discussion here is given:

yit = β0xit + γ0zi + ζ + εit = δ0wit + ζ + εit; εit = ui + vit, (1)

where i = 1,..., N denotes cross-sectional (individual) observations, t = 1,...,
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T denotes time, wit = (xit, zi)
0, and δ = (β0, γ0)0. In model (1), xit is a k × 1

vector of time-varying regressors, zi is a g × 1 vector of time-invariant regres-
sors, ζ is an overall intercept term, and the error εit contains a time-invariant
individual effect ui and random noise vit. We consider the case of both large
numbers of individual and time series observations, so asymptotic properties of
the estimators and statistics for model (1) apply as N,T → ∞. The orders
of convergence rates of some estimators depend on whether or not the model
contains an overall intercept term. This problem will be addressed later.
We assume that data are distributed independently (but not necessarily

identically) across different i, and that the vit are independently and identically
distributed (i.i.d.) with var(vit) = σ2v. We further assume that ui, xi1, ..., xiT
and zi are strictly exogenous with respect to vit; that is,

E(vit | ui, xi1, ..., xiT ) = 0,
for any i and t. This assumption rules out the cases in which the set of regres-
sors includes lagged dependent variables or predetermined regressors. Detailed
assumptions about the regressors xi1, ..., xiT , zi will be introduced later.
For convenience, we adopt the following notational rule: For any p×1 vector

ait, we denote ai =
1
T

P
t ait; eait = ait − ai; a = 1

N

P
i ai; eai = ai − a. Thus,

for example, for wit = (x0it, z
0
i)
0
, we have wi = (x0i, z

0
i)
0; ewit = (ex0it, 01×g)0;

w = (x0, z); ewi = ((xi − x)0, (zi − z)0)0.
When the regressors are correlated with the individual effect, both of the

OLS and GLS estimators of δ are biased and inconsistent. This problem has
been traditionally addressed by the use of the within estimator (OLS on data
transformed into deviations from individual means):bβw = (Pi,t exitex0it)−1Pi,t exitey0it.
Under our assumptions, the variance-covariance matrix of the within estimator
is given:

V ar(bβw) = σ2ε(
P
i,t exitex0it)−1. (2)

Although the within method provides a consistent estimate of β, a serious
defect is its inability to identify γ, the impact of time-invariant regressors. A
popular treatment of this problem is the random effects (RE) assumption under
which the ui are random and uncorrelated with the regressors:

E(ui | xi1, ..., xiT , zi) = 0. (3)

Under this assumption, all of the parameters in model (1) can be consistently
estimated. For example, a simple but consistent estimator is the between esti-
mator (OLS on data transformed into individual means):bδb = (bβ0b, bγ0b)0 = (Pi ewi ew0i)−1Pi ewieyi.
However, as Balestra and Nerlove (1966) suggest, under the RE assumption,
an efficient estimator is the GLS estimator of the following form:bδg = [

P
i,t( ewit + θT ewi)( ewit + θT ewi)0]−1Pi,t( ewit + θT ewi)(eyit + θT eyi)

= [
P
i,t ewit ew0it + Tθ2T Pi ewi ewi0]−1[Pi,t ewiteyi + Tθ2T Pi ewieyi],
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where θT =
p
σ2v/(Tσ

2
u + σ2v). The variance-covariance matrix of this estimator

is given:
V ar(bδg) = σ2v[

P
i,t ewit ew0it + Tθ2T Pi ewi ewi0]−1. (4)

For notational convenience, we assume that σ2u and σ2v are known, while in
practice they must be estimated.4

An important advantage of the GLS estimator over the within estimator is
that it allows researchers to estimate γ. In addition, the GLS estimator of β
is more efficient than the within estimator of β, because [V ar(bβw) − V ar(bβg)]
is positive definite so long as θT > 0.

5 Despite these desirable properties, it is
important to notice that the consistency of the GLS estimator crucially depends
on the RE assumption (3). Accordingly, the legitimacy of the RE assumption
should be tested to justify the use of GLS. In the literature, a Hausman test
(1978) has been widely used for this purpose. The statistic used for this test is
a distance measure between the within and GLS estimators of β:

HMNT ≡ (bβw − bβg)0[V ar(bβw)− V ar(bβg)]−1(bβw − bβg). (5)

For the cases in which T is fixed and N →∞, the RE assumption warrants that
the Hausman statistic HMNT is asymptotically χ

2-distributed with degrees of
freedom equal to k. This result is a direct outcome of the fact that for fixed T ,
the GLS estimator bβg is asymptotically more efficient than the within estimatorbβw, and that the difference between the two estimators is asymptotically normal;
specifically, as N →∞,

√
NT (bβw − bβg) =⇒ N(0, plimN→∞NT [V ar(bβw)− V ar(bβg)]), (6)

where “=⇒” means “converges in distribution.”
An important condition that guarantees (6) is that θT > 0. If θT = 0, then

the within and GLS estimators become identical and the Hausman statistic is
not defined. Observe now that θT → 0 as T → ∞. This observation naturally
raises several issues related with the asymptotic properties of the Hausman test
as T → ∞. In order to clarify the nature of the problem, consider model (1),
but without the time-invariant regressors and the overall intercept term (ζ).
Assume that xit contains a single time-varying regressor which is independently
and identically distributed over different i and t. For this simple model, we
can easily show plimN,T→∞NTV ar(bβw) = plimN,T→∞NTV ar(bβg), using the
fact that θT → 0 as T → ∞. This asymptotic equality immediately implies
that the within and GLS estimators of β are asymptotically equivalent; that
is, plimN,T→∞

√
NT (bβw − bβg) = 0k×1. This preliminary finding raises several

questions. First, does this equivalence result hold for the general cases with

4The conventional estimates are given:

bσ2v =Pi,t(eyit − exitbβw)2/[N(T − 1)]; bσ2u =Pi(eyi − ewibδb)2/N − bσ2v/T.
5This efficiency gain of course results from the fact that the GLS estimator utilizes between

variations in xi.
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time-varying regressors with arbitrary autocovariance structure? Second, what
is the asymptotic distribution of the Hausman statistic when N,T → ∞? Is
the statistic HMNT χ2-distributed despite the equivalence result? Third, does
the Hausman test have power to detect violations of the RE assumption when
T is large? Our equivalence result implies that between variations in data
become less informative for the GLS estimation of β as T →∞. Then, the GLS
estimator of β may remain consistent even if the RE assumption is violated. If
this is the case, the power of the Hausman test might be inversely related to the
size of T . We will attempt to answer these questions in the following sections.
What makes it complex to investigate the asymptotic properties of the

within, GLS estimators and the Hausman statistic is that their convergence
rates crucially depend on data generating processes. The following subsection
considers several simple cases to illustrate this point.

2.2 Preliminary Results

This section considers several simple examples demonstrating that the con-
vergence rates of the within, GLS estimators and the Hausman statistic cru-
cially depend on whether or not data are cross-sectionally heteroskedastic, and
whether or not time-varying regressors contain time trends. For model (1), we
can easily show that bβw − β = A−1NTaNT ; (7)bβb − β = (BNT − CNTH−1N C 0NT )

−1[bNT − CNTH−1N cNT ], (8)

where,

ANT =
P
i,t exitex0it;BNT =Pi exiex0i;CNT =Pi exiez0i;HN =Pi eziez0i;

aNT =
P
i,t exitvit; bNT =Pi exi(ui + vi); cNT =Pi ezi(ui + vi).

Using (7) and (8), we can also show that the GLS estimator is a convex combi-
nation of the within and between estimators:

bβg − β = [ANT + Tθ
2
T (BNT − CNTH−1N C0NT )]

−1 (9)

×[ANT (bβw − β) + Tθ2T (BNT − CNTH−1N C 0NT )(bβb − β)].

Using (7), (8) and (9), we can also obtain

bβw − bβg = [ANT + Tθ
2
T (BNT − CNTH−1N CNT )]

−1

×Tθ2T (BNT − CNTH−1N C 0NT )[(bβw − β)− (bβb − β)]; (10)

V ar(bβw)− V ar(bβg) = A−1NT − [ANT + Tθ2T (BNT − CNTH−1N C 0NT )]
−1. (11)

Equation (10) provides some insight into the convergence rate of the Hausman

test statistic. Note that (bβw−bβg) depends on both (bβw−β) and (bβb−β). Appar-
ently, the between estimator bβb exploits only N between-individual variations,

7



while the within estimator bβw is computed based on N(T −1) within-individual
variations. Accordingly, (bβb−β) converges to a zero vector in probability much
slower than (bβw − β) does. Thus, we can conjecture that the convergence rate

of (bβw − bβg) will depend on that of (bβb − β), not (bβw − β). Indeed, we below
justify this conjecture.
In this subsection, we only consider a simple model which has a single time-

varying regressor (xit) and a single time-invariant regressor (zi). Accordingly,
all of the terms defined in (7)-(11) are scalars. We consider asymptotics under
the RE assumption (3). To save space, this section only considers the estimators
of β and the Hausman test. The asymptotic distributions of the estimators of
γ will be discussed in Section 4. Throughout the examples below, we assume
that the zi are i.i.d. over different i with N(0,σ

2
z). In addition, we introduce

a notation eit to denote a white noise component in the time-varying regressor
xit. We assume that the eit are i.i.d. over different i and t with N(0,σ

2
e), and

are uncorrelated with the zi.

CASE 1: We here consider a case in which the time-varying regressor xit
contains a time trend of order m. Specifically, we assume:

xit = Θ1,it
m + eit. (12)

We assume the parameters Θ1,i are fixed with finite limN→∞ 1
N

P
iΘ1,i =

limN→∞Θ1 ≡ p1,1 and limN→∞ 1
N

P
iΘ

2
1,i ≡ p1,2. We can allow them to be

random without changing our results, but at the cost of analytical complexity.6

We consider two possible cases: one in which the parameters Θ1,i are hetero-
geneous, and the other in which they are constant over different individuals.
Allowing the Θ1,i to be different across different individuals, we allow the xit
be cross-sectionally heteroskedastic. In contrast, if the Θ1,i are constant over
different i, the xit become cross-sectionally homogeneous. As we show below,
the convergence rates of the between estimator and Hausman test statistic are
different in the two cases. Furthermore, whether or not the model is estimated
with an overall intercept could matter for convergence rates.
To be more specific, consider the three terms BNT , CNT , and bNT defined

below (8). A straightforward algebra reveals that with rt ≡ t/T ,

BNT =
P

i(Θ1,i −Θ1)2
µ
Tm

1

T

P
t r
m
t

¶2
+2
P
i(Θ1,i −Θ1)

µ
Tm

1

T

P
t r
m
t

¶
(ei − e) +

P
i(ei − e)2;

CNT =
P
i(Θ1,i −Θ1)

µ
Tm

1

T

P
t r
m
t

¶
(zi − z)+

P
i(ei − e)(zi − z);

6We can consider a more general case: for example, xit = ait
m + Θi + Θt + bizi + eit.

However, the same asymptotic results apply to this general model. This is so because the
trend term (tm) dominates asymptotics.
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bNT =
P
i(Θ1,i −Θ1)

µ
Tm

1

T

P
t r
m
t

¶
ui +

P
i(ei − e)ui

+
P

i(Θ1,i −Θ1)
µ
Tm

1

T

P
t r
m
t

¶
vi +

P
i(ei − e)vi.

From these three equations, it is obvious that the terms including Tm will be
the dominant factors determining the asymptotic properties of BNT , CNT , and
bNT . However, if the parameters Θ1,i are constant over different individuals so
that Θ1,i−Θ1 = 0, none of BNT , CNT , and bNT depends on Tm. For this case,
the asymptotic properties of the three terms depend on (ei − e). This result
indicates that the asymptotic distribution of the between estimator bβb, which is
a function of BNT , CNT , and bNT , will depend on whether the parameters Θ1,i
are cross-sectionally heteroskedastic or homoskedastic. Somewhat interestingly,
however, the distinction between these two cases becomes unimportant when
the model has no intercept term (ζ = 0) and is estimated with this restriction.
For such a case, BNT , CNT and bNT depend on xi instead of exi. With xi, the
terms (Θ1,i − Θ1) and (ei − e) in BNT , CNT , and bNT are replaced by Θ1,i
and ei, respectively. Then, it is clear that the trend term Tm remains as a
dominating factor whether or not the Θ1,i are heterogenous.
We now consider the asymptotic distributions of the within, between, GLS

estimators and the Hausman statistic under the two alternative assumptions
about the parameters Θ1,i.

CASE 1.1: Assume that the parameters Θ1,i are heterogeneous over differ-
ent individuals; that is, p1,2 − p21,1 6= 0. For this case, we can easily show:

plimN,T→∞
1

T 2m
1

NT
ANT = p1,2q1;

plimN,T→∞
1

T 2m
1

N
BNT =

p1,2 − p21,1
(m+ 1)2

;

plimN,T→∞
1

Tm
1

N
CNT = 0;

plimN→∞
1

N
HN = σ2z,

where q1 = limT→∞ 1
T

P
t[(t/T )

m − 1
T

P
t(t/T )

m]2 =
R 1
0
[rm − 1/(m+ 1)]2dr.7

The first two equalities are obtained using the fact that limT→∞ 1
T

P
t(t/T )

m

=
R 1
0
rmdr = 1/(m+ 1). In addition, we can also show that as (N,T →∞),

1

Tm
1√
NT

aNT =⇒ N(0, p1,2q1σ
2
v);

1

Tm
1√
N
bNT =⇒ N

Ã
0,σ2u

p1,2 − p21,1
(m+ 1)2

!
;

7We can obtain these results using the fact that under given assumptions, 1√
T

P
t eit and

1√
T

P
t vit are i.i.d. over different i with N(0,σ

2
e) and N(0,σ

2
v), respectively, for any T.
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1√
N
cNT =⇒ N(0,σ2zσ

2
u).

Using these results and the fact that limN→∞Tθ2T = σ2v/σ
2
u, we can show that

as (N,T →∞),
Tm
√
NT (bβw − β) =⇒ N

µ
0,

σ2v
p1,2q1

¶
; (13)

Tm
√
N(bβb − β) =⇒ N

Ã
0,σ2u

(m+ 1)2

p1,2 − p21,1

!
; (14)

Tm
√
NT (bβg − β) = Tm

√
NT (bβw − β)

+
1√
T

σ2v
σ2u

(p1,2 − p21,1)
p1,2q1(m+ 1)2

Tm
√
N(bβb − β)

+op(1/
√
T ); (15)

Tm
√
NT 2(bβw − bβg) = −σ

2
v

σ2u

(p1,2 − p21,1)
p1,2q1(m+ 1)2

Tm
√
N(bβb − β) + op(1)

=⇒ N

Ã
0,

σ4v
σ2u

(p1,2 − p21,1)
(p1,2q1)2(m+ 1)2

!
; (16)

plimN,T→∞NT 2m+2[V ar(bβw)− V ar(bβg)] = σ4v
σ2u

(p1,2 − p21,1)
(p1,2q1)2(m+ 1)2

. (17)

Several remarks follow. First, not surprisingly, all of the within, between and
GLS estimators are superconsistent when the time-varying regressor xit contains
a time trend. Second, from (15), we can see that the two estimators bβw and bβg
are Tm

√
NT−equivalent in the sense that (bβw − bβg) is op(1/Tm√NT ). This is

so because the second term in the right-hand side of (15) is Op(1/
√
T ). Nonethe-

less, from (16), we can see that (bβw−bβg) is Op(1/Tm√NT 2) and asymptotically
normal. These results indicate that the within and GLS estimators are equiva-
lent to each other by the order of Tm

√
NT , but not by the order of Tm

√
NT 2.

Third, from (16) and (17), we can see that the Hausman statistic is asymptoti-
cally χ2−distributed. Fourth, when the model is estimated without an intercept
term because ζ = 0, all of the results (14)-(17) are still valid with p1,2 replacing
(p1,2 − p21,1).
Finally, (16) provides some intuition about the power property of the Haus-

man test. Observe that the asymptotic distribution of (bβw − bβg) depends on
that of (bβb−β). From this, we can conjecture that the Hausman statistic is for

testing consistency of the between estimator bβb, not exactly for testing the RE
assumption. In fact, the RE assumption (3) is not a necessary condition for the

asymptotic unbiasedness of bβb. For example, if the effect is correlated with zi,
10



but not with xit, bβb could be asymptotically unbiased, as we find in section 4.8
Thus, the Hausman test does not have power to detect the violations of the RE
assumption in the direction in which bβb remains asymptotically unbiased. This
issue will be further explored later.

CASE 1.2: We now assume that Θ1,i = Θ1 for all i; that is, p1,2−p21,1 = 0.
As we have discussed above, the terms BNT , CNT , and bNT do not depend
on Tm. Furthermore, the asymptotic distribution of the between estimator bβb
depends on the eit instead of the Θ1,i. Specifically, we can easily show that

plimN,T→∞
T

N
BNT = σ2e;

plimN,T→∞

√
T

N
CNT = 0;

√
T√
N
bNT =⇒ N

¡
0,σ2uσ

2
e

¢
,

while other asymptotics are essentially the same as those obtained for CASE
1.1. The asymptotic distributions of the within and GLS estimators are the
same under both CASE 1.1 and CASE 1.2, but those of the between and the
Hausman statistic are different. For CASE 1.2,r

N

T
(bβb − β) =⇒ N

µ
0,
σ2u
σ2e

¶
; (18)

T 2m
√
NT 3(bβw − bβg) = −σ

2
v

σ2u

σ2e
Θ21q1

r
N

T
(bβb − β) + op(1)

=⇒ N

µ
0,

σ4vσ
2
e

Θ41q
2
1σ

2
u

¶
; (19)

plimN,T→∞NT 4m+3[V ar(bβw)− V ar(bβg)] = σ4vσ
2
e

Θ41q
2
1σ

2
u

. (20)

Several comments follow. First, the between estimator is no longer supercon-
sistent if the time trend in xit is common to every individual (i.e., the parameters
Θ1,i are the same for i). An interesting result is obtained when N/T → c <∞.
For this case, the between estimator is inconsistent, although it is still asymp-
totically unbiased. This implies that the between estimator is an inconsistent
estimator for the analysis of cross-sectionally homogeneous panel data unless
N is substantially larger than T . Second, the convergence rate of (bβw − bβg)
is quite different between CASE 1.1 and 1.2. Notice that the convergence rate
of (bβw − bβg) is √NT 4m+3 for CASE 1.2, while it is √NT 2m+2 for CASE 1.1.

8In contrast, the between estimator of γ, bγb, is inconsistent whenever the RE assumption
is violated.
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Thus, (bβw−bβg) converges in probability to zero much faster in CASE 1.2 than in
CASE 1.1. Nonetheless, the Hausman statistic is asymptotically χ2-distributed
in both cases.

CASE 2: We now consider two simple examples in which the time-varying
regressor xit is stationary without trend. Assume:

xit = Θ2,i +Ψ2,t + eit, (21)

where Θ21,i and Ψ21,t are fixed individual-specific and time-specific effects, re-
spectively. Define

p2,1 = limN→∞
1

N

P
iΘ2,i; p2,2 = limN→∞

1

N

P
iΘ

2
2,i;

q2,1 = limT→∞
1

T

P
tΨ2,t; q2,2 = limT→∞

1

T

P
tΨ

2
2,t.

Notice that if the Θ2,i are allowed to vary across different i, the xit become
cross-sectionally heteroskedastic. Similarly to CASE 1, we will demonstrate
that the convergence rates of the between estimator and the Hausman statistic
depend on whether the xit is cross-sectionally heteroskedastic or homogeneous.

CASE 2.1: Assume that the Θ2,i vary across different i; that is, p2,1−p22,2 6=
0. With this assumption, we can easily show:

plimN,T→∞
1

NT
ANT = q2,2 − q22,1 + σ2e;

plimN,T→∞
1

N
BNT = p2,2 − p22,1;

plimN,T→∞
1

N
CNT = 0;

plimN→∞
1

N
HN = σ2z;

1√
NT

aNT =⇒ N(0,σ2v(q2,2 − q22,1 + σ2e));

1√
N
bNT =⇒ N(0,σ2u(p2,2 − p22,1));

1√
N
cNT =⇒ N(0,σ2uσ

2
z).

With these results, we can show

√
NT (bβw − β) =⇒ N

Ã
0,

σ2v
(q2,2 − q22,1 + σ2e)

!
; (22)

√
N(bβb − β) =⇒ N

Ã
0,

σ2u
(p2,2 − p22,1)

!
; (23)
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√
NT (bβg − β) =

√
NT (bβw − β)

+
1√
T

σ2v
σ2u

(p2,2 − p22,1)
(q2,2 − q22,1 + σ2e)

√
N(bβb − β)

+op

µ
1√
T

¶
; (24)

√
NT 2(bβw − bβg) = −σ

2
v

σ2u

(p2,2 − p22,1)
(q2,2 − q22,1 + σ2e)

√
N(bβb − β) + op(1)

=⇒ N

Ã
0,
σ4v
σ2u

(p2,2 − p22,1)
(q2,2 − q22,1 + σ2e)

2

!
; (25)

plimN,T→∞NT 2[V ar(bβw)− V ar(bβg)] = σ4v
σ2u

(p2,2 − p22,1)
(q2,2 − q22,1 + σ2e)

2
. (26)

Note that (22) - (26) are essentially the same as (13) - (17) except that they do
not include the time trend Tm.

CASE 2.2: Now, we consider the case in which the Θ2,i are constant over
different i; that is, p2,2 − p22,1 = 0. If the model contains no intercept term
(ζ = 0) and it is estimated with this restriction, all of the results (22) - (26) are
still valid with p2,2 replacing (p2,2 − p22,1). However, if the model contains an
intercept term, the assumption of cross-sectional homoskedasticity affects the
convergence rates of the between estimator and the Hausman statistic, while
it does not to the within and GLS estimators. To see this, we assume that
Θ2,i = 0, for all i, without loss of generality. Then, we can showr

N

T
(bβb − β) =⇒ N

µ
0,
σ2u
σ2e

¶
; (27)

√
NT 3(bβw − bβg) = −σ

2
v

σ2u

σ2e
(q22,2 − q222,1 + σ2e)

r
N

T
(bβb − β) + op(1)

=⇒ N

Ã
0,
σ4v
σ2u

σ2e
(q22,2 − q222,1 + σ2e)

2

!
; (28)

plimN,T→∞NT 3[V ar(bβw)− V ar(bβg)] = σ4vσ
2
e

σ2u(q22,2 − q222,1 + σ2e)
2
, (29)

as (N,T → ∞). Observe that the between estimator is
q

N
T −consistent as in

CASE 1.2.

CASE 3: So far, we have considered the cases in which the time-varying
regressor xit and the time invariant regressor zi are uncorrelated. We now

13



examine the cases in which this assumption is relaxed. The degree of the cor-
relation between the xit and zi may vary over time. As we demonstrate below,
the asymptotic properties of the panel data estimators and the Hausman test
statistic depend on how the correlation varies over time. The basic model we
consider here is given by

xit = Θ3,i +Ψ3,t +Πizi/t
m + eit, (30)

where the Θ3,i and Πi are individual-specific fixed parameters, the Ψ3,t are
the time-specific fixed effects, m is a non-negative real number. Observe that
because of the presence of the Θ3,i and Πi, the xit are not i.i.d. over different
i. The correlation between xit and zi decreases over time if m > 0. In contrast,
m = 0 implies that the correlation remains constant over time. We will not
report our detailed asymptotic results for model (30) with heterogeneous Θ3,i,
because they are essentially the same as those we obtain for CASE 2.1. This is
so because the terms Θ3,i dominate and the terms Πizi/t

m become irrelevant
in asymptotics. Thus, we set Θ3,i = 0 for all i. In addition, we set Ψ3,t = 0 for
all t. We do so because presence of the time effects is irrelevant for convergence
rates of panel data estimators and the Hausman statistic. For CASE 3, the
within and GLS estimators are always

√
NT−consistent regardless of the size

of m. Thus, we only report the asymptotic results for the between estimator
and the Hausman statistic.
For the cases in which the parameters Πi are the same for all i, it is easy

to show that the between estimator bβb does not depend on Πizi/tm. For such
cases, the terms Πizi/t

m do not play any important role in asymptotics. In
fact, when the parameters Πi are the same for all i, we obtain exactly the same
asymptotic results as those for CASE 2.2. This result is due to the fact that
the individual mean of the time-varying regressor xi becomes a linear function
of the time invariant regressor zi if the Πi are the same for all i. This particular
case does not seem to be of practical importance, because it assumes an overly
restrictive covariance structure of regressors. Thus we only consider the cases
in which the Πi are heterogeneous over different i.
We examine three possible cases: m ∈ ( 12 ,∞], m = 1

2 , and m ∈ [0, 12). We
do so because, depending on the size of m, one (or both) of the two terms eit
and Πizi/t

m in xit becomes a dominating factor in determining the convergence

rates of the between estimator bβb and the Hausman statistic HMTN .

CASE 3.1: Assume thatm ∈ ( 12 ,∞]. This is the case where the correlation
between xit and zi fades away quickly over time. Thus, one could expect that
the correlation between xit and zi (through the term Πizi/t

m) would not play
any important role in asymptotics. Indeed, a straightforward algebra, which
is not reported here, justifies this conjecture: The term eit in xit dominates
Πizi/t

m asymptotics, and thus, this is essentially the same case as CASE 2.2.9

9We can obtain this result using the fact that limT→∞ 1√
T

P
t t
−m = 0, if m > 1

2
.
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CASE 3.2: We now assume m = 1/2. For this case, define

p3,1 = limN→∞
1

N

P
iΠi; p3,2 = limN→∞

1

N

P
iΠ

2
i ,

and q3 = limT→∞ 1
T1−m

R 1
0
r−mdr = 1

1−m for m ≤ 1
2 . With this notation, a

little algebra shows that as (N,T →∞),r
N

T
(bβb − β) =⇒ N

Ã
0,

σ2u
(p3,2 − p23,1)q23σ2z + σ2e

!
.

Observe that the asymptotic variance of the between estimator bβb depends on
both the terms σ2e and (p3,2−p23,1)q23σ2z. That is, both the terms eit and Πizi/tm
in xit are important in the asymptotics of the between estimator bβb. This implies
that the correlation between the xit and zi, when it decreases reasonably slowly
over time, matters for the asymptotic distribution of the between estimator bβb.
Nonetheless, the convergence rate of bβb is the same as that of bβb for CASEs 2.2
and 3.1. We can also show

√
NT 3(bβw − bβg) = −σ

2
v

σ2u

(p3,2 − p23,1)q23σ2z + σ2e
σ2e

r
N

T
(bβb − β) + op(1)

=⇒ N

Ã
0,
σ4v
σ2u

(p3,2 − p23,1)q23σ2z + σ2e
σ4e

!
;

plimN,T→∞NT 3[V ar(bβw)− V ar(bβg)] = σ4v
σ2u

(p3,2 − p23,1)q23σ2z + σ2e
σ4e

,

both of which imply that the Hausman statistic is asymptoticallyχ2−distributed.

CASE 3.3: Finally, we consider the case in which m ∈ [0, 12), where the
correlation between xit and zi decays over time slowly. Note that the correlation
remains constant over time if m = 0. We can showr

N

T 2m
(bβb − β) =⇒ N

Ã
0,

σ2u
(p3,2 − p23,1)q23σ2z

!
.

Observe that the asymptotic distribution of bβb no longer depends on σ2e. This

implies that the term eit in xit dominates Πizi/t
m in the asymptotics for bβb.

Furthermore, the convergency rate of bβb now depend on m. Specifically, so long
as m < 1

2 , the convergence rate increases as m decreases. In particular, when
the correlation between xit and zi remains constant over time (m = 0), the

between estimator bβb is √N−consistent as in CASE 2.1. This is so because,
in this case, the term Πizi takes the role of the Θi term in CASE 2.1. Finally,
the following results indicate that the convergence rate of the Hausman statistic
HMNT also depends on m:
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√
NT 2m+2(bβw − bβg) = −σ

2
v

σ2u

(p3,2 − p23,1)q23σ2z
σ2e

r
N

T 2m
(bβb − β) + op (1)

=⇒ N

Ã
0,
σ4v
σ2u

(p3,2 − p23,1)q23σ2z
σ4e

!
;

plimN,T→∞NT 2m+2[V ar(bβw)− V ar(bβg)] = σ4v
σ2u

(p3,2 − p23,1)q23σ2z
σ4e

.

So far, we have considered several simple cases to demonstrate how the
convergence rates of the popular panel data estimators and the Hausman test are
sensitive to data generating processes. For these simple cases, all of the relevant
asymptotics can be obtained in a straightforward manner. In the following
sections, we will show that the main results obtained from this section apply
to more general cases in which regressors are serially dependent with arbitrary
covariance structures.

3 Conditional α - Mixing

In the asymptotic analysis of the general model (1) with large T , some technical
difficultes arise when some of the time varying regressors xit are correlated with
the time invariant regressors zi. For such cases, the temporal dependence of
the time-varying regressors may persist through their correlations with the time
invariant regressors; that is, the time series of xit may not be ergodic in time.
Thus, for general asymptotic results, we need to study the probability limits
of the random variables containing time-averages of such non-ergodic regressors
(i.e., BNT and bNT in Section 2.2). In this section, we discuss the assumptions
that can facilitate derivations of the (joint) limits of such random variables as
(N,T →∞) simultaneously.
Consider CASE 3.3 with m = 0. Observe that the time series of xit is

not ergodic, because of the presence of the time invariant random component
Πizi in xit. In addition, cov(xit, xi,t+l) = E(xit − E(xit))(xi,t+l − E(xi,t+l))
= Π2iσ

2
z 9 0 as l → ∞. Thus, the termporal dependence of xit does not

decay. Despite these problems, we were able to obtain handy asymptotic results
based on the two strong assumptions: E(xit | zi) = Πizi, and the conditional
terms eit = xit − E(xit | zi) are i.i.d. over time. This example illustrates that
under some certain conditions imposed on non-ergodic time-varying regressors,
we can analyze the asymptotic properties of sample averages of panel data. In
fact, our major findings from CASE 3 remain unaltered even if we alternatively
assume that E(xit | zi) is an arbitrary nonlinear function of zi, and/or the eit
are autocorrelated, so long as the eit satisfy the conditions we discuss in detail
below. Formally, we consider a mixing model that is defined conditionally on the
sigma field generated by time invariant regressors zi, which we call a conditional
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mixing model. For this model, we can establish the joint limits of the sample
averages of panel data whose time series are non-ergodic, as we show in Section
4 and Appendix.
Suppose that (Ω,F , P ) is a basic probability space, and G,H,Z are sub-

sigma fields of F with Z ⊂ G and Z ⊂ H. Then, a conditional α-mixing coeffi-
cient between two sub-sigma fields G and H on Z is defined as

αZ (G,H) = sup
G∈G, H∈H

|PZ (G ∩H)− PZ (G)PZ (H)| , (31)

where PZ (·) denotes a conditional probability defined on the sigma field Z.10
This conditional α-mixing coefficient is a straightforward extension of the usual
α-mixing coefficient, except that it uses the conditional probability PZ (·) in-
stead of the usual unconditional probability P (·).
The general definition of the conditional α−mixing coefficient can apply to

our panel data model as follows. Suppressing the subscript i for convenience,
assume that {xt}t and z are scalar random variables, respectively defined in the
probability space (Ω,F , P ), where suptE |xt|2q <∞, for some q > 1.11 Define

Ft−∞ = σ (..., xt−1, xt) ;F∞t+d = σ (xt+m, xt+m+1, ...) ;Z = σ(z),

where Z is assumed to be a non-trivial sigma field, i.e., in Z there exists a
subset A of Ω with 0 < P (A) < 1. Define

αZ (d) = sup
t

sup
G∈Ft

−∞, H∈F∞t+d
|PZ (G ∩H)− PZ (G)PZ (H)| . (32)

With this definition, we will say that the sequence {xt} is conditionally α-mixing
if and only if

αZ (d)→ 0 a.s. , (33)

as d → ∞, where the almost sure convergence of αZ (d) holds with respect to
an outer probability measure P ∗ of the probability space (Ω,F , P ).12
A technical problem in using the conditional α-mixing coefficient αZ (d) (as

well as αZ(G,H)) is that it is not necessarily measurable with respect to the
conditioning sigma field Z. This problem raises some technical difficulties in
deriving useful inequalities. For example, following the usual techniques related
to (unconditional) α−mixing coefficients, one may expect that the following
conditional versions of α-mixing inequalities hold:

|EZ (xtxt+d)−(EZxt) (EZxt+d)| ≤ 2 q

q−1
³
αZ (d)

q−1
q

µ́
sup
t

³
EZ |xt|2q

¶́ 1
q

; (34)

|EZ (xtxt+d)−(EZxt) (EZxt+d)| ≤ 8
³
αZ (d)

q−1
q

µ́
sup
t

³
EZ |xt|2q

¶́ 1
q

, (35)

10We also could define similar conditional mixing coefficients of β− mixing and φ− mixing.
11The xt need not be strictly stationary.
12For the details of the outer probability measure P∗, readers may refer to Chapter 1.2 of

van der Vaart and Wellner (1996).
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where EZ(·) to the conditional expectation with respect to a sigma field Z. The
inequality (34) is a conditional version of Theorem 1 and equation (1.3) in Rio
(1993), or Theorem 1.1 and Corollary 1.1. of Bosq (1996). The inequality (35) is
a conditional version of the mixing inequality in Corollary A.2 of Hall and Heyde
(1980, p. 278). Observe that both of the inequalities indicate covZ(xt, xt+d)→ 0
as d → ∞, so long as the sequence {xt} is conditionally α−mixing. We may
obtain these inequalities by modifying the method used in Rio (1993) or Hall
and Heyde (1980) with the conditional arguments. However, to do so requires
αZ (d) to be measurable.13

It is difficult to derive the sufficient and necessary conditions that warrant
Z-measurability of the conditional mixing coefficient, αZ(d) or αZ(G,H). Thus,
we here only consider a sufficient condition. Stated formally:

Theorem 1 Suppose that the sigma field Z is generated by a countable partition
Π = {Π1, ...,Πi, ...} of Ω with P (Πi) > 0 for all i. Then, αZ (G,H) in (31) is
measurable with respect to the sigma field Z.

When Z is the sigma field generated by a time-invariant regressor z, the
restriction on Z imposed by Theorem 1 is satisfied if z is a discrete random
variable, i.e., the supports of z are countable. This condition would not be
too restrictive in practice. In many empirical studies, time invariant regressors
generally consist of dummy variables (such as gender, race, or region), or dis-
crete variables (such as years of schooling). Such variables easily satisfy the
requirement of Theorem 1.

4 Main Results

This section derives for the general model (1) the asymptotic distributions of
the within, between, GLS estimators and the Hausman statistic. In Section
2, we have considered independently several simple models in which regressors
are of particular characteristics. The general model we consider in this section
contains all of the different types of regressors analyzed in Section 2. More
detailed assumptions are introduced below.
From now on, the following notation is repeatedly used. The expression

“→p” means “converges in probability,” while “⇒” means “converges in distri-
bution” as in Section 2.2. For any matrix A, the norm kAk signifies ptr(AA0).
When B is a random matrix with E kBkp <∞, then kBkp denotes (E kBkp)1/p.
We use EF(·) to denote the conditional expectation operator with respect to a
sigma field F . We also define kBkF,p = (EF kBkp)1/p . The notation xN ∼
aN indicates that there exists n and finite constants d1 and d2 such that

13Admittedly, we here do not attempt to determine whether or not measurability of αZ (d)
is a necessary condition for the conditional mixing inequalities (34) and (35). It might be
possible to derive the inequalities with some alternative methods that do not require the
measurability assumption. Thus, we would like to emphasize that measurability of αZ(d) is
a sufficient, but not necessarily a necessary condition.
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infN≥n xN
aN
≥ d1 and supN≥n xN

aN
≤ d2. We also use the following notation for

relevant sigma-fields: Fxi = σ(xi1, ..., xiT ); Fzi = σ (zi); Fz = σ (Fz1 , ...,FzN );
Fwi = σ (Fxi ,Fzi); and Fw = σ (Fw1 , ...,FwN ) . The xit and zi are now k × 1
and g × 1 vectors, respectively.
As in Section 2, we assume that the regressors (x0i1, ..., x

0
iT , z

0
i)
0 are indepen-

dently distributed across different i. In addition, we make the following the
assumption about the composite error terms ui and vit:

Assumption 1 (about ui and vit): For some q > 1,

(i) the ui are independent over different i with supiE |ui|4q <∞.
(ii) The vit are i.i.d. with mean zero and variance σ

2
v across different i and t,

and are independent of xis, zi and ui, for all i, t, and s. Also, kvitk4q ≡ κv
is finite.

Assumption 1(i) is a standard regularity condition for error-components models.
Assumption 1(ii) indicates that all of the regressors and individual effect are
strictly exogenous with respect to the error terms vit.

14

We now make the assumptions about regressors. In Section 2, we have con-
sidered three different cases: CASEs 1, 2, and 3. Consistently with these cases,
we partition the k × 1 vector xit into three subvectors, x1,it, x2,it, and x3,it,
which are k1 × 1, k2 × 1, and k3 × 1, respectively. The vector x1,it consists of
the regressors with deterministic trends. We may think of three different types
of trends: (i) cross-sectionally heterogeneous nonstochastic trends in mean (but
not in variance or covariances); (ii) cross-sectionally homogeneous nonstochas-
tic trends; and (iii) stochastic trends (trends in variance) such as unit-root time
series. In Section 2, we have considered the first two cases as CASEs 1.1 and
1.2, respectively. The latter case is materially similar to CASE 2.2, except that
the convergence rates of estimators and test statistics are different under these
two cases. Thus, we here only consider the case (i). We do not cover the cases
of stochastic trends (iii), leaving the analysis of such cases to future study.
The two subvectors x2,it and x3,it are random regressors with no trend in

mean. The partition of x2,it and x3,it is made based on their correlatedness
with zi. Specifically, we assume that the x2,it are not correlated with zi, while
the x3,it are. In addition, in order to accommodate CASEs 2.1 and 2.2, we also
partition the subvector x2,it into x21,it and x22,it, which are k21×1 and k22×1,
respectively. Similarly to CASE 2.1, the regressor vector x21,it is heterogeneous
over different i, as well as different t, with different means Θ21,it. In contrast,
x21,it is homogeneous cross-sectionally with means Θ22,t for all i for given t.
We also incorporate CASEs 3.1, 3.2 and 3.3 into the model by partitioning x3,it
into x31,it, x32,it, and x33,it, which are k31×1, k32×1, and k33×1, respectively,
depending on how fast their correlations with zi decay over time. The more
detailed assumptions on the regressors xit and zi follow:

14As discussed in Section 2.1, this assumption rules out weakly exogenous or predetermined
regressors.
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Assumption 2 (about x1,it):

(i) For some q > 1, κ
x1
≡ supi,t kx1,it −Ex1,itk4q <∞.

(ii) Let xh,1,it be the h
th element of x1,it. Then, Exh,1,it ∼ tmh,1 for all i and

h = 1, ..., k1, where mh,1 > 0.

Assumption 3 (about x2,it): For some q > 1,

(i) {x2,it − Ex2,it}t is an α-mixing process for all i, and is independent of
Fzi for all i. Let αi be the mixing coefficient of x2,it. Then, supi αi (d) is
of size −3 q

q−1 , i.e., supi αi (d) = O
³
d−p−3

q
q−1
´
, for some p > 0.

(ii) E(x21,it) = Θ21,it and E(x22,it) = Θ22,t, where supi,t kΘ21,itk, supt kΘ22,tk
< ∞, and Θ21,it 6= Θ21,jt if i 6= j.

(iii) κx2 ≡ supi,t kx2,it − Ex2,itk4q <∞.

Assumption 4 (about x3,it): For some q > 1,

(i)
©
x3,it −EFzix3,it

ª
t
is conditional α-mixing for all i. Let αFzi be the con-

ditional α-mixing coefficient of x3,it on Fzi . Then, supi αzi (d) is of size
−3 q

q−1 a.s., i.e., supi αzi (d) = O
³
d−p−3

q
q−1
´
a.s., for some p > 0. Also,

E
³P∞

d=1 d
2 supi

³
αFzi (d)

q−1
q

´´2
<∞.

(ii) E (x3,it) = Θ3,it, where supi,t kΘ3,itk <∞.

(iii) E
³
supi,t

°°x3,it −EFzix3,it°°8qFzi ,4q´ <∞.
(iv) Let xh,3k,it be the h

th element of x3k,it, where k = 1, 2, 3. Then, conditional
on zi,

(iv.1)
¡
EFzixh,31,it −Exh,31,it

¢ ∼ t−mh,31 a.s., where 1
2 < mh,31 ≤ ∞ for

h = 1, ..., k31 (here, mh,31 =∞ implies that EFzixh,31,it−Exh,31,it =
0 a.s.);

(iv.2)
¡
EFzixh,32,it −Exh,32,it

¢ ∼ t− 1
2 a.s. for h = 1, ..., k32 ;

(iv.3)
¡
EFzixh,33,it −Exh,33,it

¢ ∼ t−mh,33 a.s., where 0 ≤ mh,33 <
1
2 for

h = 1, ..., k33 .

Assumption 5 (about zi):

(i) {zi}i is i.i.d. over i with E(zi) = Θz, and kzik4q <∞ for some q > 1.

(ii) The support of the density of zi is countable for all i.
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Two points may be worth mentioning here. First, Assumption 4(i) dictates
that the regressors in x3,it are mixing conditional on Fzi . Alternately, we may
assume that x3,it and zi have some common factors, say fi (i = 1, ...,N), on
which, conditionally, the variables in x3,it are mixing. This alternative assump-
tion does not generate any materially different asymptotic result. Second, as
discussed in Section 3, Assumption 5(ii) warrants that the conditional α−mixing
coefficient αzi(d) is measurable.
Panel data estimators of individual coefficients have different convergence

rates depending on the types of the corresponding regressors. To address these
differences, we define:

Dx,T = diag (D1T ,D2T ,D3T ) ;

DT = diag (Dx,T , Ig) ,

where

D1T = diag
¡
T−m1 , ..., T−mk1

¢
;

D2T = diag (D21T ,D22T ) = diag
³
Ik21 ,

√
TIk22

´
;

D3T = diag (D31T ,D32T ,D33T )

= diag
³√
TIk31 ,

√
TIk32 , T

m1,33 , ..., Tmk33,33

´
.

Observe that D1T , D2T , and D3T are conformable to regressor vectors x1,it,
x2,it, and x3,it, respectively, while DT and Ig are to xit and zi, respectively.
The diagonal matrix DT is chosen so that plimN→∞ 1

N

P
iDT ewi ew0iDT is well

defined and finite. For future use, we also define

Gx,T = diag (D1T , Ik21 , Ik22 , Ik3) ;

Jx,T = diag (Ik1 , Ik21 ,D22T ,D3T ) ,

so that
Dx,T = Gx,TJx,T .

Using this notation, we make the following regularity assumptions on the un-
conditional and conditional means of regressors:

Assumption 6 (convergence as T → ∞): Defining t = [Tr], we assume that
the following restrictions hold as T →∞.
(i) Let τ1 (r) = diag (rm1,1 , ..., rmk1,1) ,where mh,1 is defined in Assumption

2. Then,
D1TE (x1,it)→ τ1 (r)Θ1,i

uniformly in i and r ∈ [0, 1], for some Θ1,i = (Θ1,1,i, ...,Θk1,1,i)
0
with

supi kΘ1,ik <∞.
(ii) Θ21,it → Θ21,i and Θ3,it → Θ3,i uniformly in i with supi kΘ21,ik <∞ and

supi kΘ3,ik <∞.
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(iii) Uniformly in i and r ∈ [0, 1],
D31T

¡
EFzix31,it −Ex31,it

¢→ 0k31×1 a.s.;

D32T
¡
EFzix32,it −Ex32,it

¢→ 1√
r
Ik32g32,i (zi) a.s.;

D33T
¡
EFzix33,it −Ex33,it

¢→ τ33 (r) g33,i (zi) a.s.,

where

g32,i = (g1,32,i, ..., gk32,32,i)
0 ; g33,i = (g1,33,i, ..., gk33,33,i)

0 ,

and g32,i (zi) and g33,i(zi) are zero-mean functions of zi with

0 < E sup
i
kg3k,i (zi)k4q <∞, for some q > 1,

and g3k,i 6= g3k,j for i 6= j, and τ33 (r) = diag (r−m1,33 , ...r−mk33,33).

(iv) There exist τ̃ (r) and G̃i (zi) such that

kD3T
¡
EFzix3,it −Ex3,it

¢ k ≤ eτ(r) eGi(zi),
where

R
τ̃ (r)

4q
dr <∞ and E supi G̃i (zi)

4q
<∞ for some q > 1.

(v) Uniformly in (i, j) and r ∈ [0, 1];
D31T (Ex31,it − Ex31,jt)→ 0k31×1,

D32T (Ex32,it − Ex32,jt)→ 1√
r
Ik32

³
µg32i − µg32j

´
,

D33T (Ex33,it − Ex33,jt)→ τ33 (r)
³
µg33i − µg33j

´
,

with supi kµg32ik, supi kµg33ik <∞.

Some remarks would be useful to understand Assumption 6. First, to have
an intuition about what the assumption implies, we consider, as an illustrative
example, the simple model in CASE 3 in Section 2.2, in which x3,it = Πizi/t

m+
eit, where eit is independent of zi and i.i.d. across i. For this case,

D3T
¡
EFzix3,it −Ex3,it

¢
= D3TΠi (zi −Ezi) /tm;

D3T (Ex3,it − Ex3,jt) = D3T (ΠiEzi −ΠjEzj) /tm.
Thus,

g3k,i (zi) = Πi (zi −Ezi) ;
µg3k,i = ΠiEzi.

Second, Assumption 6(iii) makes the restriction that E supi kg3k,i (zi)k4q is
strictly positive, for k = 2, 3. This restriction is made to warrant that g3k,i (zi) 6=
0 a.s. If g3k,i (zi) = 0 a.s.,

15then

D3kTEFzi (x3k,it − Ex3k,it) ∼ τ3k (r) g32,i (zi) = 0 a.s.,

15An example is the case in which x3,it = eitΠizi/tm,where eit is independent of zi with
mean zero.
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and the correlations between x3,it and zi no longer play any important role in
asymptotics. Assumption 6(iii) rules out such cases.
Assumption 6 is about the asymptotic properties of means of regressors

as T → ∞. We also need additional regularity assumptions on the means of
regressors that apply as N →∞. Define

H1 =

Z 1

0

τ1(r)dr; H32 =

µZ 1

0

1√
r
dr

¶
Ik32 ; H33 =

Z 1

0

τ33(r)dr;

and

E

H32g32,i (zi)H33g33,i (zi)
zi −Ezi

H32g32,i (zi)H33g33,i (zi)
zi −Ezi

0=
Γg32,g32,i Γg32,g33,i Γg32,z,i
Γ0g32,g33,i Γg33,g33,i Γg33,z,i
Γ0g32,z,i Γ0g33,z,i Γzz,i

 .
With this notation, we assume the followings:

Assumption 7 (convergence as N → ∞): Define eΘ1,i = Θ1,i − 1
N

P
iΘ1,i;eΘ21,i = Θ21,i − 1

N

P
iΘ21,i; µ̃g32,i = µg32,i − 1

N

P
i µg32,i; and µ̃g33,i = µg33,i −

1
N

P
i µg33,i . As N →∞,

(i) 1
N

P
i


H1eΘ1,ieΘ21,i
H32µ̃g32,i
H33µ̃g33,i



H1eΘ1,ieΘ21,i
H32µ̃g32,i
H33µ̃g33,i


0

→


ΓΘ1,Θ1 ΓΘ1,Θ21 ΓΘ1,µ32 ΓΘ1,µ33
Γ0Θ1,Θ21 ΓΘ21,Θ21 ΓΘ21,µ32 ΓΘ21,µ33
Γ0Θ1,µ32 Γ0Θ21,µ32 Γµ32,µ32 Γµ32,µ33
Γ0Θ1,µ33 Γ0Θ21,µ33 Γ0µ32,g33 Γµ33,µ33

.
(ii) 1

N

P
i

Γg32,g32,i Γg32,g33,i Γg32,z,i
Γ0g32,g33,i Γg33,g33,i Γg33,z,i
Γ0g32,z,i Γ0g33,z,i Γzz,i

→
Γg32,g32 Γg32,g33 Γg32,z
Γ0g32,g33 Γg33,g33 Γg33,z
Γ0g32,z Γ0g33,z Γz,z

.
(iii) The limit of 1

N

P
iΘ1,iΘ

0
1,i exists.

Apparently, by Assumptions 6 and 7, we assume the sequential convergence
of the means of regressors as T → ∞ followed by N → ∞. However, this by
no means implies that our asymptotic analysis is a sequential one. Instead, the
uniformity conditions in Assumption 6 allow us to obtain our asymptotic results
using the joint limit approach that applies as (N,T → ∞) simultaneously.16
Joint limit results can be obtained under an alternative set of conditions that
assume uniform limits of the means of regressors sequentially asN →∞ followed
by T →∞. Nonetheless, we adopt Assumptions 6 and 7, because they are much
more convenient to handle the trends in regressors x1,it and x3,it for asymptotics.
The following notation is for conditional or unconditional covariances among

time-varying regressors. Define

Γi (t, s) = [Γjl,i (t, s)]jl,

16For the details on the relationship between the sequential and joint approaches, see Apos-
tol (1974, Theorems 8.39 and 9.16) for the cases of double indexed real number sequences,
and Phillips and Moon (1999) for the cases of random sequences.
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where Γjl,i (t, s) = E
¡
xj,it −EFzixj,it

¢ ¡
xl,is −EFzixl,is

¢
, for j, l = 2, 3. Essen-

tially, the Γi is the unconditional mean of the conditional variance-covariance
matrix of (x02,it, x

0
3,it)

0. We also define the unconditional variance-covariance
matrix of (x01,it, x

0
2,it, x

0
3,it)

0 by

Γ̃i (t, s) = [Γ̃jl,i (t, s)]jl,

where Γ̃jl,i (t, s) = E (xj,it −Exj,it) (xl,is −Exl,is) , for j, l = 1, 2, 3. Observe

that Γ22,i (t, s) = Γ̃22,i (t, s), since x2,it and zi are independent. With this
notation, we make the following assumption on the convergence of variances
and covariances:

Assumption 8 (convergence of covariances): As (N,T →∞),
(i) 1

N

P
i
1
T

P
t

P
s

µ
Γ22,i (t, s) Γ23,i (t, s)
Γ023,i (t, s) Γ33,i (t, s)

¶
→
µ
Γ22 Γ23
Γ023 Γ33

¶
.

(ii) 1
N

P
i
1
T

P
t Γ̃i (t, t)→ Φ.

Note that the variance matrix [Γjl]j,l=2,3 is the cross section average of the long-

run variance-covariance matrix of
¡
x02,it, x

0
3,it

¢0
. For future use, we partition the

two limits in the assumption conformably to (x021,it,x
0
22,it,x

0
31,it,x

0
32,it,x

0
33,it)

0 as
follows:

µ
Γ22 Γ23
Γ023 Γ33

¶
=


Γ21,21 Γ21,22 Γ21,31 Γ21,32 Γ21,33
Γ021,22 Γ22,22 Γ22,31 Γ22,32 Γ22,33
Γ021,31 Γ022,31 Γ31,31 Γ31,32 Γ31,33
Γ021,32 Γ022,32 Γ031,32 Γ32,32 Γ32,33
Γ021,33 Γ022,33 Γ031,33 Γ032,33 Γ33,33

 ;

Φ =

 Φ11 Φ12 Φ13
Φ012 Φ22 Φ23
Φ013 Φ023 Φ33

 .
Finally, we make a formal definition of the random effects assumption, which

is a more rigorous version of (3).

Assumption 9 (random effects): Conditional on Fw, {ui}i=1,...,N is i.i.d. with
mean zero, variance σ2u and finite κu ≡ kuikFw,4.
To investigate the power property of the Hausman test, we also need to

define an alternative hypothesis which states a particular direction of model
misspecification. Among many alternatives, we here consider a simpler one.
Specifically, we consider an alternative hypothesis under which the conditional
mean of ui is a linear function of DT ewi. Abusing the conventional definition
of fixed effects (that indicates nonzero-correlations between wi = (x0it, z

0
i)
0 and

ui), we refer to this alternative as the fixed effects assumption:

Assumption 10 (fixed effects): Conditional on Fw, the {ui}i=1,...,N is i.i.d.

with mean ew0iDTλ and variance σ2u, where λ is a (k+g)×1 nonrandom nonzero
vector.
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Here, DT ewi = [(Dx,T exi)0, ezi] can be viewed as a vector of detrended regressors.
Thus, Assumption 10 indicates non-zero correlations between the effect ui and
detrended regressors. The term ew0iDTλ can be replaced by λo +w0iDTλ, where
λo is any constant scalar. We use the term ew0iDTλ instead of λo+w0iDTλ simply
for convenience.
A sequence of local versions of the fixed effects hypothesis is given:

Assumption 11 (local alternatives to random effects): Conditional on Fw, the
sequence {ui}i=1,...,N is i.i.d. with mean ew0iDTλ/√N , variance σ2u, and κ4u =

EFw (ui −EFwui)4 < ∞, where λ 6= 0(k+g)×1 is a nonrandom vector in Rk+g.

Under this Assumption, E (DT ewiui) = 1√
N
E
³
DT ewi ew0

iDT

´
λ → 0(k+g)×1, as

(N,T →∞).
Although Assumptions 10 and 11 are convenient to analyze the power prop-

erties of the Hausman test, they are somewhat restrictive. Specifically, under
these alternative hypotheses, the Hausman test lacks power to detect correla-
tions between the effect ui and the time invariant regressors zi. To see this,
suppose we partition λ into (λ0x,λ

0
z)
0 corresponding to ewi = (ex0i, ez0i)0. Assume

that λx = 0k×1; that is, the xit (t = 1, ..., T ) are not correlated with ui, con-
ditional on zi. For simplicity, assume that T is fixed. For this case, under the
fixed effects assumption, the between estimators of β and γ, bβb and bγb, are
equivalent to least squares on the modeleyi = β0exi + (γ + λz)

0ezi + (u∗i + evi),
where u∗i = ui − ew0iDTλ = ui− λ0zezi. From this, we can easily see that bβb andbγb are asymptotically unbiased estimators of β and (γ+λz), respectively. That
is, bγb is not an asymptotically unbiased estimator of γ. As we have discussed
in Section 2.2, the asymptotic distribution of the Hausman statistic depends on
that of bβb, not of bγb. Thus, the Hausman test does not have power to detect
the violations of the random effects assumption that do not bias bβb (regardless
of the size of T ). Accordingly, under our fixed effects and the local alternative
assumptions (Assumptions 10 and 11), the Hausman test possesses no power to
detect nonzero correlations between zi and ui. This problem arises of course
because we assume that the conditional mean of the effect ũi is a linear function
of w̃i. When the conditional mean of the effect is a nonlinear function of w̃i,
the Hausman test can possess power to detect nonzero correlations between ui
and zi.

17

The following lemmas provide some results that are useful to derive the
asymptotic distributions of the within, between, and GLS estimators of β and
γ.

17Even if the conditional mean of ui is linear in ewi, the Hausman test may have power
to detect non-zero λz , if λx and λz are not functionally independent. For example, consider
a model with scalar xit and zi. Suppose that xit and zi have a common factor fi; that is,
xit = fi + eit and zi = fi + ηi. (This is the case discussed below Assumption 5.) Assume
E(ui | fi, ηi, ēi) = cηi. Assume that fi, ηi and eit are normal, mutually independent, and
i.i.d. over different i and t with zero means, and variances σ2f , σ

2
η,and σ2e, respectively. Note

that under given assumptions, xit is not correlated with ui, while zi is. For this case, however,

25



Lemma 2 Under Assumptions 1-8, we obtain the following results as (N,T →
∞). For some positive semidefinite matrices Ψx and Ξ (defined in the Ap-
pendix),

(a) 1
N

P
i
1
T

P
tGx,T x̃itx̃

0
itGx,T →p Ψx;

(b) 1√
N

P
i
1√
T

P
tGx,T x̃itṽit ⇒ N

¡
0,σ2vΨx

¢
;

(c) 1
N

P
iDT ewi ew0iDT →p Ξ;

(d) 1√
N

P
iDT w̃iṽi →p 0(k+g)×1.

Lemma 3 Under Assumptions 1-8 and Assumption 11 (local alternatives to
random effects), as (N,T →∞),

1√
N

P
iDT ewieui ⇒ N

¡
Ξλ,σ2uΞ

¢
.

Lemma 4 Under Assumptions 1-8 and Assumption 10 (fixed effects),

1

N

P
iDT ewieui →p Ξλ,

as (N,T →∞) .
The following assumption is required for identification of the within and

between estimators of β and γ.

Assumption 12 The matrices Ψx and Ξ are positive definite.

Two remarks on this assumption follow. First, this assumption is also sufficient
for identification of the GLS estimation. Second, while the positive definiteness
of the matrix Ξ is required for identification of the between estimators, it is not
a necessary condition for the asymptotic distribution of the Hausman statistic
obtained below. We can obtain the same asymptotic results for the Hausman
test even if we alternatively assume that within estimation can identify β (pos-
itive definite Ψx) and between estimation can identify γ given β (the part of
Ξ corresponding to ezi is positive definite).18 Nonetheless, we assume that Ξ is
invertible for convenience.
We now consider the asymptotic distributions of the within, between and

GLS estimators of β and γ:

we can show that
E(ui | xi, zi) = xiλx + ziλz ,

where d = (σ2f + σ2e/T )(σ
2
f + σ2η) − σ4f , λx = −cσ2fσ2η/d, λz = c(σ2f + σ2e/T )σ

2
η/d. Observe

that λx 6= 0, if λz 6= 0 (c 6= 0). Thus, λx is functionally related to λz . In addition, it is easy

to show that plimN→∞bβb = β + λx 6= β, if λz 6= 0 (c 6= 0). Thus, nonzero λz biases bβb.
18This claim can be checked with the following simple example. Consider a simple model

with one time-varying regressor xit and one time invariant regressor zi. Assume that xit =
azi + eit, where the eit are i.i.d. over different i and t. For this model, it is straightforward
to show that the matrix Ξ fails to be invertible. Nonetheless, under the random effects
assumption, the Hausman statistic can be shown to follow a χ2 distribution with the degree
of freedom equal to one.
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Theorem 5 (asymptotic distribution of the within estimator): Under Assump-
tions 1-8 and Assumption 12, as (N,T →∞),

√
NTG−1x,T (bβw − β)⇒ N

¡
0,σ2vΨ

−1
x

¢
.

Theorem 6 (asymptotic distribution of the between estimator): Suppose that
Assumption 1-8 and 12 hold. As (N,T →∞),
(a) under Assumption 9 (random effects),

D−1T
√
N

µ
β̂b − β
γ̂b − γ

¶
=

Ã
D−1x,T

√
N
³
β̂b − β

´
√
N (γ̂b − γ)

!
⇒ N

¡
0,σ2uΞ

−1¢ ;
(b) under Assumption 11 (local alternatives to random effects),

D−1T
√
N

µ
β̂b − β
γ̂b − γ

¶
=

Ã
D−1x,T

√
N
³
β̂b − β

´
√
N (γ̂b − γ)

!
⇒ N

¡
Ξλ,σ2uΞ

−1¢ .
Theorem 7 (asymptotic distribution of the GLS estimator of β): Suppose that
Assumptions 1-8 and 12 hold.
(a) Under Assumption 11 (local alternatives to random effects),

√
NTG−1x,T

³
β̂g − β

´
=
√
NTG−1x,T

³
β̂w − β

´
+ op (1) ,

as (N,T → ∞) .
(b) Suppose that Assumption 10 (fixed effects) holds. Partition λ = (λ0x,λ

0
z)
0

conformably to the sizes of xit and zi. Assume that λx 6= 0k×1. If N/T → c <∞
and the included regressors are only of the x22,it- and x3,it-types (no trends and
no cross-sectional heteroskedasticity in xit), then

√
NTG−1x,T

³
β̂g − β

´
=
√
NTG−1x,T

³
β̂w − β

´
+ op (1) .

Theorem 8 (asymptotic distribution of the GLS estimator of γ): Suppose that

Assumptions 1-8 and 12 hold. Define l0z =
µ
0g×k

...Ig

¶
. Then, the following

statements hold as (N,T →∞) .
(a) Under Assumption 11 (local alternatives to random effects),

√
N
¡
γ̂g − γ

¢
=

Ã
1

N

X
i

z̃iz̃
0
i

!−1Ã
1√
N

X
i

z̃iũi

!
+ op (1)

⇒ N
³
(l0zΞlz)

−1
l0zΞλ, σ

2
u (l

0
zΞlz)

−1´
.

(b) Under Assumption10 (fixed effects),¡
γ̂g − γ

¢→p (l
0
zΞlz)

−1
l0zΞλ.
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Several remarks follow. First, all of the asymptotic results given in Theorems
5-8 except for Theorem 7(b) hold as (N,T → ∞), without any particular re-
striction on the convergence rates of N and T . The relative size of N and T does
not matter for the results, so long as both N and T are large. Second, one can
easily check that the convergence rates of the panel data estimates of individual
β coefficients reported in Theorems 5-8 are consistent with those from Section
2.2. Third, Theorem 6 shows that under Assumption 9 (random effects), the
between estimator of γ, bγb, is √N−consistent regardless of the characteristics
of time-varying regressors. Fourth, both the between estimators of β and γ
are asymptotically biased under the sequence of local alternatives (Assumption
11). Fifth, as Theorem 7(a) indicates, the within and GLS estimators of β are
asymptotically equivalent not only under the random effects assumption, but
also under the local alternatives. Furthermore, the GLS estimator of β is asymp-
totically unbiased under the local alternatives, while the between estimator of β
is not. The asymptotic equivalence between the within and GLS estimation un-
der the random effects assumption is nothing new. Previous studies have shown
this equivalence based on a naive sequential limit method (T → ∞ followed
by N → ∞) and some strong assumptions such as fixed regressors. Theorem
7(a) and (b) confirm the same equivalence result, but with more rigorous joint
limit approach as (N,T →∞) simultaneously. It is also intriguing to see that
the GLS and within estimators are equivalent even under the local alternative
hypotheses.
Sixth, somewhat surprisingly, as Theorem 7(b) indicates, even under the

fixed effects assumption (Assumption 10), the GLS estimator of β could be
asymptotically unbiased (and consistent) and equivalent to the within counter-
part, (i) if the size (N) of the cross section units does not dominate excessively
the size (T ) of time series in the limit (N/T → c <∞), and (ii) if the model does
not contain trended or cross-sectionally heterogenous time-varying regressors.
This result indicates that when the two conditions are satisfied, the biases in
GLS caused by fixed effects are generally much smaller than those in between.
If at least one of these two conditions is violated, that is, if N/T → ∞, or if
the other types of regressors are included, the limit of (β̂g − β̂w) is determined
by how fast N/T → ∞ and how fast the trends in the regressors increase or
decrease.19

Finally, Theorem 8(a) indicates that under the local alternative hypothe-
ses, the GLS estimator γ̂g is

√
N−consistent and asymptotically normal, but

asymptotically biased. The limiting distribution of γ̂g, in this case, is equivalent
to the limiting distribution of the OLS estimator of γ in the panel model with
the known coefficients of the time-varying regressors xit (OLS on eyit − β0exit =
γ0ezi + (ui + evit)). Clearly, the GLS estimator γ̂g is asymptotically more effi-
cient than the between estimator γ̂b. On the other hand, under the fixed effect

assumption, unlike the GLS estimator of β, bβg, the GLS estimator γ̂g is not
consistent as (N,T →∞). The asymptotic bias of γ̂g is given in Theorem 8(b).
19In this case, without specific assumptions on the convergence rates of N/T and the trends,

it is hard to generalize the limits of the difference of the within and the GLS estimators.
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Lastly, the following theorem finds the asymptotic distribution of the Haus-
man test statistic under the random effect assumption and the local alternatives:

Theorem 9 Suppose that Assumptions 1-8 and 12 hold. Corresponding to the
size of (x0i, z

0
i)
0, partition Ξ and λ, respectively, as follows:

Ξ =

µ
Ξxx Ξxz
Ξ0xz Ξzz

¶
; λ =

µ
λx
λz

¶
.

Then, as (N,T →∞) ,
(a) under Assumption 9 (random effects),

HMNT ⇒ χ2k;

(b) under Assumption 11 (local alternatives to random effects),

HMNT ⇒ χ2k(η),

where η = λ0x(Ξxx − ΞxzΞ−1zz Ξ0xz)λx/σ2u is the noncentral parameter.
Theorem 9 shows that under the random effects assumption, the Hausman
statistic is asymptotically χ2−distributed with degrees of freedom equal to k
(the number of the time-varying regressors). Furthermore, Theorem 9 (ii) shows
that the Hausman statistic has significant local power to detect any correlation
between the time-varying regressors xit and the effect ui. This is so, because
the noncentral parameter η equals zero if, and only if, λx = 0k×1. In contrast,
the noncentrality parameter η does not depend on λz, indicating that the Haus-
man test has no power to detect nonzero correlations between time invariant
regressors zi and the individual effect ui in the direction of our local alternative
hypotheses (Assumption 11). This result holds even if T is finite and fixed. As
discussed earlier, this is due to the fact that the conditional mean of the effect ui
is a linear function of regressors under our local alternative hypotheses. When
the conditional mean is not linear, the Hausman test could have a power to
detect nonzero correlations of the effect ui with the time invariant regressors.
However, the power of the Hausman test to such correlations is generally lim-
ited. This is so because the Hausman test can detect such correlations only if
they can cause a large bias in the between estimator of β, the coefficient vector
on time-varying regressors (see Ahn and Low, 1996).

5 Conclusion

This paper has considered the asymptotic properties of the popular panel data
estimators and the Hausman test. We find that the convergence rates of the
estimators and the test statistic are sensitive to data generating process. In
particular, the convergence rates of the between estimator crucially depend on
whether the data are cross-sectionally heteroskedastic or homoskedastic. De-
spite the different convergence rates, however, the estimators are consistent and
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asymptotically normal under the random effects assumption. The conventional
Hausman test is also well defined. The Hausman test, which is based on the
difference between the GLS and within estimators, has significant local power
to detect violations of the random effects assumption (in particular, non-zero
correlations between the time-varying regressors and unobservable individual
effects), despite the fact that the two estimators are asymptotically identical
under a sequence of local alternative hypotheses.
In this paper, we have restricted our attention to the asymptotic properties

of the existing estimators and tests when panel data contain both large numbers
of cross section and time series observations. Apparently, thus, this paper does
not provide any new estimator or test. However, this paper makes several
contributions to the literature. First, our findings have pedagogical values for
future studies. For example, we find that asymptotics as (N,T → ∞) are
much more sensitive to data generating processes than asymptotics as either
N → ∞ or T → ∞ are. However, previous studies have often assumed that
data are cross-sectionally i.i.d.. Our findings suggest that future studies should
pay more attention to cross-sectional heterogeneity. Second, we consider the
cases in which the time series of time-varying regressors are not ergodic due to
their correlations with time invariant regressors. For such cases, we have shown
that the limits of averages of panel data can be derived under the assumption of
conditional α−mixing. It would also be interesting to see how this conditional
α−mixing concept can be refined and generalized to other more sophisticated
panel data models. Finally, differently from many other previous studies, we
avoid making any particular restriction on the relative sizes of N and T . We
do so using a more rigorous joint limit instead of other simple sequential limit
methods. Thus we are confident that our theoretical results apply to a broader
range of panel data.
An obvious extension of our paper is the instrumental variables estimation

of Hausman and Taylor (1981), Amemiya and MaCurdy (1986), and Breusch,
Mizon and Schmidt (1989). For an intermediate model between fixed effects and
random effects, these studies propose several instrumental variables estimators
by which both the coefficients on time-varying and time invariant regressors can
be consistently estimated. It would be interesting to investigate the large N and
large T properties of these instrumental variables estimators and the Hausman
tests based on these estimators.
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6 Appendix A: Preliminary Results

We here provide some preliminary lemmas that are useful to prove the main
results in Section 4. From now on, we use the notation M to denote a generic
constant, if no explanation follows.

Lemma 10 Let fi,T , fi, and gi are integrable functions in probability space
(Ω,F , P ) . If fi,T → fi a.s. uniformly in i as T → ∞, and there exists gi
such that |fi,T | ≤ gi for all i and T with E supi gi < ∞, then Efi,T → Efi
uniformly in i as T →∞.
Proof
Let hi,T = |fi,T − fi| . Under given assumptions, 0 ≤ supi hi,T ≤ 2 supi gi

and hi,T → 0 uniformly in i as T →∞. Then, by Fatou’s Lemma

2E sup
i
gi = E

µ
lim inf
T→∞

µ
2 sup

i
gi − sup

i
hi,T

¶¶
≤ lim inf E

µ
2 sup

i
gi − sup

i
hi,T

¶
= 2E sup

i
gi− lim sup

T→∞
E sup

i
hi,T ,

from which we can deduce

lim sup
T→∞

E sup
i
hi,T ≤ 0.

Then, since

0 ≤lim sup
T→∞

sup
i
|E (fi,T − fi)| ≤lim sup

T→∞
sup
i
Ehi,T ≤lim sup

T→∞
E sup

i
hi,T ≤ 0,

we have the required result: Efi,T → Efi uniformly in i as T →∞. ¥

The following lemma is a uniform version of the Toeplitz lemma.

Lemma 11 Let ait be a sequence of real numbers such that ait → ai uniformly
in i as t→∞ with supi |ai| < M. Then, (a) 1

T

P
t ait → ai uniformly in i, and

(b) 1
T

P
t a
2
it → a2i uniformly in i.

Proof
From the uniform convergence of ait, for a given ε > 0, we can choose t0

such that t ≥ t0 implies that
sup
i
|ait − ai| < ε.

Then, Part (a) follows because t ≥ t0 implies

sup
i

¯̄̄̄
¯ 1T X

t

(ait − ai)
¯̄̄̄
¯ ≤ 1

T

X
t

sup
i
|ait − ai| < ε.
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For Part (b), notice that

sup
i

¯̄
a2it − a2i

¯̄ ≤ sup
i
|ait + ai| sup |ait − ai|

≤ M sup |ait − ai|→ 0

as t→∞, where the last inequality holds because supi |ai| <∞ and sup |ait − ai|
→ 0. Then, by Part (a), we can obtain the desired result. ¥

Lemma 12 Suppose that Xi,T and Xi are sequences of random vectors. Sup-
pose that Xi,T → Xi in probability (or almost surely) uniformly in i as T →∞,
and 1

N

P
iXi → X in probability (or almost surely) as N → ∞. Then, as

(N,T →∞) ,
1

N

X
i

Xi,T → X

in probability (or almost surely).

Proof
We only prove the lemma for the case of convergence in probability, because

the almost sure convergence case can be proven by the similar fashion. Since
1
N

P
iXi →p X as N → ∞ and X →p Xi uniformly in i as T → ∞, for given

ε, δ > 0, we can choose N0 and T0 such that

P

(°°°°° 1N X
i

Xi −X
°°°°° > ε

2

)
≤ δ

2
;

P

½
sup
i
kXi,T −Xik > ε

2

¾
≤ δ

2
,

whenever N ≥ N0 and T ≥ T0. Now, suppose that N ≥ N0 and T ≥ T0. Then,

P

(°°°°° 1N X
i

Xi,T −X
°°°°° > ε

)

≤ P

(°°°°° 1N X
i

(Xi,T −Xi)
°°°°° > ε

2

)
+ P

(°°°°° 1N X
i

Xi −X
°°°°° > ε

2

)

≤ P

½
sup
i
k(Xi,T −Xi)k > ε

2

¾
+

δ

2
= δ. ¥

Lemma 13 Suppose that a sequence of random vectors Zi is independently dis-
tributed across i. Let Fzi = σ (Zi) . Assume that QiT (k × k) is a sequence of
independent random matrices across i satisfying

sup
i,T
EFzi kQiT k 1 {kQiTk > M}→ 0 a.s., (36)
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as M →∞, where 1(·) is the indicator function that equals one if the argument
in the parenthesis is correct, and otherwise equals zero. Then, as (N,T →∞),

1

N

X
i

¡
QiT −EFziQiT

¢→p 0.

In fact, Lemma 13 still holds even if we replace the conditional mean oper-
ator EFzi (·) by the unconditional operator E(·). Thus, we have the following
corollary.

Corollary 14 Suppose that QiT (k × k) is a sequence of independent random
matrices across i satisfying

sup
i,T
E kQiT k 1 {kQiTk > M}→ 0 a.s., (37)

as M →∞. Then, as (N,T →∞),
1

N

X
i

(QiT −EQiT )→p 0.

Proof of Lemma 13
Let Fz = σ (Fz1 , ...,FzN ) and EFz denote the conditional expectation on

Fz. For any ε > 0, we need to show that

P

(°°°°° 1N X
i

¡
QiT −EFziQiT

¢°°°°° > ε

)
→ 0.

This follows from the dominated convergence theorem if we can show that

PFz

(°°°°° 1N X
i

¡
QiT −EFziQiT

¢°°°°° > ε

)
→ 0 a.s..

But, this in turn follows from the conditional Markov inequality if we can show
that

EFz

°°°°° 1N X
i

¡
QiT −EFziQiT

¢°°°°°→ 0 a.s.. (38)

To show (38), define:

PiT = QiT1 {kQiT k ≤M} ;RiT = QiT 1 {kQiTk > M} .
Then, almost surely,

EFz

°°°°° 1N X
i

¡
QiT −EFziQiT

¢°°°°°
≤ EFz

°°°°° 1N X
i

¡
PiT −EFziPiT

¢°°°°°+ EFz
°°°°° 1N X

i

¡
RiT −EFziRiT

¢°°°°°
≤

EFz
°°°°° 1N X

i

¡
PiT −EFziPiT

¢°°°°°
2
 1

2

+ 2
1

N

X
i

EFzi kRiTk .
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By definition,

1

N

X
i

EFzi kRiTk

≤ sup
i,T
EFzi kRiTk ≤ sup

i,T
EFzi kQiT k 1 {kQiTk > M} . (39)

Also, EFz
°°°°° 1N X

i

¡
PiT −EFziPiT

¢°°°°°
2
 1

2

=

Ã
1

N2

X
i

EFzi
°°PiT −EFZiPiT°°2

! 1
2

≤ 1√
N

µ
sup
i,T
EFzi kPiT k2

¶ 1
2

≤ 1√
N
M . (40)

Choose M = Na, where 0 < a < 1
2 . Then, (39) , (40) → 0 a.s.. Consequently,

we have (38). ¥

Lemma 15 Suppose that Assumptions 1-8 hold. Let F∞z = σ (z1, ..., zN , ...) .
For a generic constant M that is independent of N and T, and for some F∞z −
measurable function Mz, the followings hold:
(a) supi,T

°° 1
T

P
t (x1,it −Ex1,it)

°°
4
< M ;

(b) supi,T

°°° 1√
T

P
t (x2,it −Ex2,it)

°°°
4
< M ;

(c) supi,T

°°° 1√
T

P
t

¡
x3,it −EFzix3,it

¢°°°
Fzi ,4

< Mz, a.s.;

(d) supi,T

°°° 1√
T

P
t

¡
x3,it −EFzix3,it

¢°°°
4
< M.

Proof
We here use q to denote the real number used in Assumptions 1-6, which is

strictly greater than 1.
Part (a)
Note that

sup
i,T

°°°°° 1T X
t

(x1,it −Ex1,it)
°°°°°
4

≤ sup
i,T
kx1,it −Ex1,itk4

≤ sup
i,T
kx1,it −Ex1,itk4q = κx1 <∞,

where the first inequality holds by Minkowski’s inequality, the second inequality
holds by Liapunov’s inequality, and the last inequality holds by Assumption 2.
Choose M = κx1 . ¥
Part (b)
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Let xh,2,it be the h
th element of xh,2,it. The required result follows if we can

show that

sup
i,T

°°°°° 1√
T

X
t

(xh,2,it −Exh,2,it)
°°°°°
4

< M for all h. (41)

The proof of (41) is similar to the proof of Lemma 1 of Andrews (1991). This
proof relies on the following α− mixing inequality presented in Hall and Heyde
(1980, p. 278). Suppose that Y and W are random variables that are G−
measurable and H− measurable, respectively, with E |Y |p < ∞ and E |W |q <
∞, where p, q > 1 with 1/p+ 1/q < 1. Then,

|E (Y −EY ) (W −EW )| ≤ 8 kY kp kWkq [α (G,H)]1−1/p−1/q , (42)

where α (G,H) is the α-mixing coefficient between the sigma fields G and H.
Now, let Xit = xh,2,it −Exh,2,it. Notice that

sup
i,T
E

Ã
1√
T

X
t

Xit

!4

≤ sup
i,T

1

T 2

TX
t=1

TX
s=1

TX
p=1

TX
k=1

|E (XitXisXipXik)|

≤ 4! sup
i,T

1

T 2

X
t

T−tX
s=0

T−sX
p=0

T−pX
k=0

|E (XitXi,t+sXi,t+s+pXi,t+s+p+k)|

≤ 4! sup
i,T

1

T 2

X
t

X
0≤p,k≤s

0≤p+k+s≤T−t

|E (Xit (Xi,t+sXi,t+s+pXi,t+s+p+k))|

+4! sup
i,T

1

T 2

X
t

X
0≤s,k≤p

0≤p+k+s≤T−t

¯̄̄̄
E [(XitXi,t+s) (Xi,t+s+pXi,t+s+p+k)]
−E (XitXi,t+s)E (Xi,t+s+pXi,t+s+p+k)

¯̄̄̄

+4! sup
i,T

1

T 2

X
t

X
0≤s,k≤p

0≤p+k+s≤T−t

|E (XitXi,t+s)E (Xi,t+s+pXi,t+s+p+k)|

+4! sup
i,T

1

T 2

X
t

X
0≤s,p≤k

0≤p+k+s≤T−t

|E ((XitXi,t+sXi,t+s+p)Xi,t+s+p+k)|

= I + II + III + IV, say.

By applying the inequality of (42) to Xi,t+sXi,t+s+pXi,t+s+p+k and Xit and
then by the Hölder inequality, we have

I ≤ 4!8 sup
i,T

1

T 2

TX
t=1

X
0≤p,k≤s≤T−t

kXitk4q kXi,t+sk4q kXi,t+s+pk4q

×kXi,t+s+p+kk4q αi (s)
q−1
q
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≤ 4!8

µ
sup
i,t
kXitk4q

¶4
sup
i,T

1

T

T−1X
s=1

sX
p=0

sX
k=0

αi (s)
q−1
q

≤ 4!8

µ
sup
i,t
kXitk4q

¶4 ∞X
s=1

(s+ 1)2 sup
i
αi (s)

q−1
q < M, (43)

where the last bound holds because supi αi (s) is of size −3 q
q−1 (see Assumption

3(i)). By the similar fashion, we can also show that

II, III, IV ≤ 4!8
µ
sup
i,t
kXitk4q

¶4 ∞X
s=1

(s+ 1)2 sup
i
αi (s)

q−1
q < M,

and we have all the required result. ¥
Part (c)
Let Yit = xh,3,it −EFzixh,3,it. Using the arguments similar to those used in

the proof of Part (b), we can show that under Assumption 4,

sup
i,T

EFzi
Ã
1√
T

X
t

Yit

!4
≤ 2M

µ
sup
i,T
kYitk4Fzi ,4q

¶ ∞X
s=1

s2
µ
sup
i
αFzi (s)

q−1
q

¶
a.s., (44)

for some constant M. By Assumption 4(i),
P∞
s=1 s

2 supi αFZi (s)
q−1
q < ∞ a.s..

Finally, since the terms supi,t kYitk4Fzi ,4q and
P∞

s=1 s
2 supi αFzi (s)

q−1
q are F∞z -

measurable, we have the desired result by choosing

Mz = 2M

µ
sup
i,T
kYitk4Fzi ,4q

¶ ∞X
s=1

s2
µ
sup
i
αFzi (s)

q−1
q

¶
. ¥

Part (d)
Again, let Yit = xh,3,it −EFzixh,3,it. From (44) , we have

sup
i,T

EÃ 1√
T

X
t

Yit

!4
= sup

i,T
E

EFzi
Ã
1√
T

X
t

Yit

!4
≤ 2ME

"µ
sup
i,t
kYitk4Fzi ,4q

¶ ∞X
s=1

s2
µ
sup
i
αFzi (s)

q−1
q

¶#

≤ 2M

·
E

µ
sup
i,t
kYitk8Fzi ,4q

¶¸ 1
2

E( ∞X
s=1

s2
µ
sup
i
αFzi (s)

q−1
q

¶)2 1
2

(45)
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for some finite constant M. But Assumption 4(i) and (iii) imply that the right-
hand side of the last inequality in (45) is finite. This completes the proof. ¥

7 Appendix B: Proofs of Main Results

Proof of Theorem 1
For the desired result, it is enough to prove that

{ω ∈ Ω|αZ (G,H) (ω) ≤ x} ∈ Z, (46)

for all x ∈ R. Since the partition Π = {Π1, ...,Πi, ...}of Ω generates the sigma
field Z, we have

sup
G∈G, H∈H

|(PZ (G ∩H)) (ω)− (PZG) (ω) (PZH) (ω)|

=
X
i∈I

sup
G∈G, H∈H

¯̄̄̄
P (G ∩H ∩Πi)

PΠi
− P (G ∩Πi)

PΠi

P (H ∩Πi)
PΠi

¯̄̄̄
1Πi (ω) ,

where 1Πi (ω) denotes the indicator function that equals one if ω ∈ Πi, and
otherwise equals zero. Let I = {1, 2, ..., i, ...} be the set of positive integers, and
let

Ix =
½
i ∈ I | sup

G∈G, H∈H

¯̄̄̄
P (G ∩H ∩Πi)

PΠi
− P (G ∩Πi)

PΠi

P (H ∩Πi)
PΠi

¯̄̄̄
≤ x

¾
.

Then, we have (46) because

{ω ∈ Ω|αZ (G,H) (ω) ≤ x} = ∪i∈IxΠi ∈ Z. ¥

Before we start proving the lemmas and theorems in Section 4, we introduce
some additional lemmas that are used repeatedly below. Recall that wit =¡
x01,it, x

0
2,it, x

0
3,it, z

0
i

¢0
. We also repeatedly use the diagonal matrix DT defined

in Section 4.

Lemma 16 Suppose that Assumptions 1-8 hold. Define Ξ = Ξ1 + Ξ2, where

Ξ1 = diag

0k1 , 0k21 ,
 Γ22,22 Γ22,31 Γ22,32
Γ022,31 Γ31,31 Γ31,32
Γ022,32 Γ031,32 Γ32,32

 , 0k33 , 0kz
 ;

Ξ2 =



ΓΘ1,Θ1 ΓΘ1,Θ21 0 0 ΓΘ1,µ32 ΓΘ1,µ33 0
Γ0Θ1,Θ21 ΓΘ21,Θ21 0 0 ΓΘ21,µ32 ΓΘ21,µ33 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Γ0Θ1,µ32 Γ0Θ21,µ32 0 0
Γg32,g32
+Γµ32,µ32

Γg32,g33
+Γµ32,µ32

Γg32,z

Γ0Θ1,µ33 Γ0Θ21,µ33 0 0
Γ0g32,g33
+Γ0µ32,µ32

Γg33,g33
+Γµ33,µ33

Γg33,z

0 0 0 0 Γ0g32,z Γ0g33,z Γz,z


.
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Then, under Assumption 11, as (N,T →∞), the followings hold.
(a) 1

N

P
iDT w̃iw̃

0
iDT →p Ξ.

(b) supN,T sup1≤i≤N E kDT w̃ik4 < M, for some constant M <∞.
(c) 1√

N

P
iDT w̃iũi ⇒ N

¡
Ξλ,σ2uΞ

¢
.

(d) 1√
N

P
iDT w̃iṽi →p 0.

Proof
Part (a)
To find the joint limit of

1

N

X
i

DT w̃iw̃
0
iDT =

1

N

X
i

DT (w̄i − w̄) (w̄i − w̄)0DT ,

we define
E∗i w̄i =

¡
Ex̄01,i, Ex̄

0
2,i, EFzi x̄

0
3,i, z

0
i

¢0
;

E∗w̄ = (Ex̄01, Ex̄
0
2, EFz x̄

0
3, z̄

0) .

With this notation, we write

1

N

X
i

DT (w̄i − w̄) (w̄i − w̄)0DT

=
1

N

X
i

DT [(w̄i −E∗i w̄i) + (E∗i w̄i −E∗w̄) + (E∗w̄ − w̄)]

× [(w̄i −E∗i w̄i) + (E∗i w̄i −E∗w̄) + (E∗w̄ − w̄)]0DT
=

1

N

X
i

(I1,i,NT+I2,i,NT+I3,NT )(I1,i,NT+I2,i,NT+I3,NT )
0
, say. (47)

We complete the proof by showing the following:

1

N

X
i

I1,i,NT I
0
1,i,NT →p Ξ1; (48)

1

N

X
i

I2,i,NT I
0
2,i,NT →p Ξ2; (49)

I3,NT →p 0; (50)

and

1

N

X
i

I1,i,NT I
0
2,i,NT ,

1

N

X
i

I1,i,NT I
0
3,NT ,

1

N

X
i

I2,i,NT I
0
3,NT→p 0. (51)

Proof of (48): Write

1

N

X
i

I1,i,NT I
0
1,i,NT
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=



(I1,1)
¡
I1,21 I1,22 I1,31 I1,32 I1,33

¢
0

I 01,21
I 01,22
I 01,31
I 01,32
I 01,33



I 021,21 I21,22 I21,31 I21,32 I21,33
I 021,22 I22,22 I22,31 I22,32 I22,33
I 021,31 I 022,31 I31,31 I31,32 I31,32
I 021,32 I 022,32 I 031,32 I32,32 I32,33
I 021,33 I 022,33 I 031,33 I 032,33 I33,33

 0

0 0 0


,

where the partition is made conformable to the size of¡
x01,it, x

0
21,it, x

0
22,it, x

0
31,it, x

0
32,it, x

0
33,it, z

0
i

¢0
.

We now consider each element in 1
N

P
i I1,i,NT I

0
1,i,NT . For I1,1, notice that by

Lemma 15(a),°°°°° 1N X
i

(x̄1,i −Ex̄1,i) (x̄1,i −Ex̄1,i)0
°°°°°

≤ 1

N

X
i

kx̄1,i −Ex̄1,ik2 ≤ 1

N

X
i

1

T

X
t

kx1,it −Ex1,itk2 = Op (1) .

Since each element in the diagonal matrix D1T tends to zero, we have

I1,1 =
1

N

X
i

D1T (x̄1,i − Ex̄1,i) (x̄1,i −Ex̄1,i)0D1T

= D1TOp (1)D1T = op (1) .

Next we consider the second diagonal block of 1
N

P
i I1,i,NT I

0
1,i,NT . Define

qiT =
√
T

µ
x̄2,i −Ex̄2,i
x̄3,i −EFzi x̄3,i

¶
;

QiT = qiT q
0
iT .

Then, by Lemma 15 (b) and (d), for some constant q > 1,

sup
i,T
E kQiTk2q = sup

i,T
E kqiTk4q <∞,

which verifies the condition (37) of Corollary 14. In consequence, from Corollary
14 and Assumption 8(i), we have

T

N

X
i

Ã
(x̄2,i−Ex̄2,i)(x̄2,i−Ex̄2,i)0 (x̄2,i−Ex̄2,i)(x̄3,i−EFzi x̄03,i)0¡
x̄3,i−EFzi x̄3,i

¢
(x̄2,i−Ex̄2,i)0

¡
x̄3,i−EFzi x̄3,i

¢¡
x̄3,i−EFzi x̄3,i

¢0!

=
1

N

X
i

1

T

X
t

X
s


(x2,it −Ex2,it)
× (x2,is −Ex2,is)0

(x2,it −Ex2,it)
× ¡x3,is −EFzix3,is¢0¡

x3,it −EFzix3,it
¢

× (x2,is −Ex2,is)0
¡
x3,it −EFzix3,it

¢
× ¡x3,is −EFzix3,is¢0


=

1

N

X
i

QiT →p lim
N

1

N

X
i

EQiT =

µ
Γ22 Γ23
Γ023 Γ33

¶
,
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as (N,T →∞) . Now, recall that

D2T = diag (D21T ,D22T ) = diag
³
Ik21 ,

√
TIK22

´
;

D3T = diag (D31T ,D32T ,D33T ) = diag
³√
TIk31 ,

√
TIk32 , (T

mh,33)h

´
,

where 0 ≤ mh,33 <
1
2 for all h = 1, ..., k33 . Therefore, as (N,T →∞) ,

I 021,21 I21,22 I21,31 I21,32 I21,33
I 021,22 I22,22 I22,31 I22,32 I22,33
I 021,31 I 022,31 I31,31 I31,32 I31,32
I 021,32 I 022,32 I 031,32 I32,32 I32,33
I 021,33 I 022,33 I 031,33 I 032,33 I33,33

→p


0 0 0 0 0
0 Γ22,22 Γ22,31 Γ22,32 0
0 Γ022,31 Γ31,31 Γ31,32 0
0 Γ022,32 Γ031,32 Γ32,32 0
0 0 0 0 0

 .
Finally, by the Cauchy-Schwarz inequality, the off-diagonal block component¡

I1,21 I1,22 I1,31 I1,32 I1,33
¢→p 0,

as (N,T →∞) .
Proof of (49): Recall that

E∗i w̄i =
¡
Ex̄01,i, Ex̄

0
2,i, EFzi x̄

0
3,i, z

0
i

¢0
;

E∗w̄ = (Ex̄01, Ex̄
0
2, EFz x̄

0
3, z̄

0) .

Write

I2,i,NT

=



D1T (Ex̄1,i −Ex̄1)
Ex̄21,i −Ex̄21

0
D31T

¡¡
EFzi x̄31,i −Ex̄31,i

¢− (EFz x̄31 −Ex̄31) + (Ex̄31,i −Ex̄31)¢
D32T

¡¡
EFzi x̄32,i −Ex̄32,i

¢− (EFz x̄32 −Ex̄32) + (Ex̄32,i −Ex̄32)¢
D33T

¡¡
EFzi x̄33,i −Ex̄33,i

¢− (EFz x̄33 −Ex̄33) + (Ex̄33,i −Ex̄33)¢
zi − z


.

To obtain the required result, we use Lemma 12. By Assumption 6, as T →∞,
we have

I2,i,NT → I2,i,N a.s. uniformly in i, (52)

where

I21,i,N =



H1Θ̃1,i
Θ̃21,i
0
0

H32
£
g32,i (zi)− 1

N

P
i g32,i (zi)

¤
+H32

h
µg32,i − 1

N

P
i µg32,i

i
H33

£
g33,i (zi)− 1

N

P
i g33,i (zi)

¤
+H33

h
µg33,i − 1

N

P
i µg32,i

i
zi − 1

N

P
i zi


.
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Write

1

N

X
i

I2,i,NI
0
2,i,N

=



II1,1 II1,21 0 0 II1,32 II1,33 II1,z
II 01,21 II21,21 0 0 II21,32 II21,33 II21,z
0 0 0 0 0 0 0
0 0 0 0 0 0 0
II 01,32 II 021,32 0 0 II32,32 II32,33 II32,z
II 01,33 II 021,33 0 0 II 032,33 II33,33 II33,z
II 01,z II 021,z 0 0 II 032,z II 033,z IIz,z


. (53)

By Assumption 7(i), as N →∞,µ
II1,1 II1,21
II 01,21 II21,21

¶
→
µ
ΓΘ1,Θ1 ΓΘ1,Θ21
Γ0Θ1,Θ21 ΓΘ21,Θ21

¶
. (54)

By the weak law of large numbers (WLLN) and Assumption 7, as N →∞, we
have  II32,32 II32,33 II32,z

II 032,33 II33,33 II33,z
II 032,z II 033,z IIz,z


→ p

 Γg32,g32 + Γµ32,µ32 Γg32,g33 + Γµ32,µ32 Γg32,z
Γ0g32,g33 + Γ

0
µ32,µ32

Γg33,g33 + Γµ33,µ33 Γg33,z
Γ0g32,z Γ0g33,z Γz,z

 . (55)

FromAssumption 7 andWLLNwith the assumption thatEg32,i (zi) =Eg33,i (zi)
= 0, it follows thatµ

II1,32 II1,33
II21,32 II21,33

¶
→p

µ
ΓΘ1,µ32 ΓΘ1,µ33
ΓΘ21,µ32 ΓΘ21,µ33

¶
, (56)

as N →∞. In addition, by WLLN with Assumption 5,µ
II1,z
II21,z

¶
→p

µ
0
0

¶
, (57)

as N →∞. The results (53)-(57) indicate that
1

N

X
i

I2,i,NI
0
2,i,N →p Ξ2, (58)

as N →∞. Finally, by Lemma 12, (52) and (58) imply (49).
Proof of (50): Notice that

E

°°°°° 1N X
i

D1T
1

T

X
t

(x1,it −Ex1,it)
°°°°°
2
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=
1

N2

X
i

E

°°°°°D1T 1T X
t

(x1,it −Ex1,it)
°°°°°
2

≤ 1

N
kD1Tk2 sup

i,t
E

°°°°° 1T X
t

(x1,it −Ex1,it)
°°°°°
2

→ 0, (59)

where the last convergence result holds by Lemma 15(a). Similarly, by Lemma
15(b),

E

°°°°° 1N X
i

D2kT
1

T

X
t

(x2k,it −Ex2k,it)
°°°°°
2

≤ 1

N
sup
i,t
E

°°°°° 1√
T

X
t

(x2k,it −Ex2k,it)
°°°°°
2

→ 0, (60)

for k = 1, 2. Finally, by Lemma 15(d), we have

E

°°°°° 1N X
i

D3kT
1

T

X
t

¡
x3k,it −EFzix3k,it

¢°°°°°
2

≤ 1

N
sup
i,T

°°°° 1√
T
D3kT

°°°°2E
°°°°° 1√

T

X
t

¡
x3k,it −EFzix3k,it

¢°°°°°
2

→ 0, (61)

for k = 1, 2, 3. The results (59), (60) and (61) imply that I3,NT →p 0.
Proof of (51): Notice that by (48) and (50),°°°°°
Ã
1

N

X
i

I1,i,NT

!
I 03,NT

°°°°°
2

=

°°°°° 1N X
i

I1,i,NT

°°°°°
2

kI3,NTk2 = Op (1) op (1) ;

°°°°°
Ã
1

N

X
i

I2,i,NT

!
I 03,NT

°°°°°
2

=

°°°°° 1N X
i

I2,i,NT

°°°°°
2

kI3,NTk2 = Op (1) op (1) .

Thus, as (N,T →∞) ,Ã
1

N

X
i

I1,i,NT

!
I 03,NT ,

Ã
1

N

X
i

I2,i,NT

!
I 03,NT →p 0.

We now consider the (k, l)th term of 1
N

P
i I1,i,NT I

0
2,i,NT . By the Cauchy-

Schwarz inequality,Ã 1
N

X
i

I1,i,NT I
0
2,i,NT

!
k,l

2 ≤ Ã 1
N

X
i

£
(I1,i,NT )k

¤2!Ã 1
N

X
i

£
(I2,i,NT )l

¤2!
,
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whereAk,l and ak denote the (k, l)
th and the kth elements of matrixA and vector

a, respectively. In view of (48) and (49) (the limits of 1
N

P
i I1,i,NT I

0
1,i,NT and

1
N

P
i I2,i,NT I

0
2,i,NT ), we can see that all of the elements in

1
N

P
i I1,i,NT I

0
2,i,NT

converge to zero, except for

1

N

X
i

D32T
¡
x̄32,i −EFzi x̄32,i

¢ ¡
EFzi x̄32,i − EFz x̄32

¢0
D32T .

Thus, we can complete the proof by showing that this term converges in prob-
ability to a conformable zero matrix.
Let

Q1,iT = D32T
¡
x̄32,i −EFzi x̄32,i

¢
;

Q2,iT = D32T
¡
EFzi x̄32,i −EFz x̄32

¢
;

Q2,i = H32

Ã
g32,i (zi)− 1

N

X
i

g32,i (zi) + µg32,i −
1

N

X
i

µg32,i

!
.

By the Cauchy-Schwarz inequality and Lemma 12,°°°°° 1N X
i

Q1,iT (Q2,iT −Q2,i)0
°°°°°
2

≤
Ã
1

N

X
i

kQ1,iT k2
!Ã

1

N

X
i

kQ2,iT −Q2,ik2
!

≤
Ã
1

N

X
i

kQ1,iT k2
!
sup
i
kQ2,iT −Q2,ik2

= Op (1) o (1) = op (1) ,

where the last line holds since

E

Ã
1

N

X
i

kQ1,iT k2
!
< M

by Lemma 15(d) and by Assumption 6. Thus,

1

N

X
i

Q1,iTQ
0
2,iT =

1

N

X
i

Q1,iTQ
0
2,i + op (1) . (62)

Next, notice that EQ1,iTQ
0
2,i = 0. Then, by the Cauchy-Schwarz inequality,

E

°°°°°
Ã
1

N

X
i

vec
¡
Q1,iTQ

0
2,i

¢!°°°°°
2

= E

°°°°°
Ã
1

N

X
i

(Q2,i ⊗Q1,iT )
!°°°°°

2

=
1

N2

X
i

E
¡
Q02,iQ2,iQ

0
1,iTQ1,iT

¢
≤ 1

N2

X
i

h
E kQ2,ik4E kQ1,iT k4

i1/2
.
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By Lemma 15(d),

sup
i,T
E kQ1,iT k4 < M,

and by Assumption 6(iii) and (v),

E kQ2,ik4 < M .

Thus,
1

N2

X
i

h
E kQ2,ik4E kQ1,iT k4

i1/2
→ 0,

which implies

E

°°°°°
Ã
1

N

X
i

vec
¡
Q1,iTQ

0
2,i

¢!°°°°°
2

→ 0.

By the Chebychev’s inequality, then, we have

1

N

X
i

Q1,iTQ
0
2,i →p 0,

as (N,T →∞) . Finally, in view of (62) we have the desired result that as
(N,T →∞) ,

1

N

X
i

Q1,iTQ
0
2,iT →p 0. ¥

Part (b)
From (47) , we write

sup
N,T

sup
1≤i≤N

E kDT (w̄i − w̄)k4

= sup
N,T

sup
1≤i≤N

E kI1,i,NT + I2,i,NT + I3,i,NTk4

≤ M1

 supN,T sup1≤i≤N E kI1,i,NT k4
+supN,T sup1≤i≤N E kI2,i,NT k4
+supN,T sup1≤i≤N E kI3,i,NT k4

 , (63)

for some constant M1. Thus, we can complete the proof by showing that each
of the three terms in the right-hand side of the inequality (63) is bounded.
For some constant M2,

sup
N,T

sup
1≤i≤N

E kI1,i,NTk4

≤ M2


supi,T E kD1T (x̄1,i −Ex̄1,i)k4

+supi,T E
°°°D2T√

T

√
T (x̄2,i −Ex̄2,i)

°°°4
+supi,T E

°°°D3T√
T

√
T
¡
x̄3,i −EFzi x̄3,i

¢°°°4
 . (64)
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By Lemma 15 and the definitions of D1T ,D2T , and D3T , each term in (64) is
finite. Thus,

sup
N,T

sup
1≤i≤N

E kI1,i,NT k4 <∞.

Next, we consider the second term in the right-hand side of the inequality
(63). For some constant M3,

sup
N,T

sup
1≤i≤N

E kI2,i,NT k4

≤ M3



supN,T sup1≤i≤N kD1T (Ex̄1,i −Ex̄1)k4
+supN,T sup1≤i≤N kEx̄21,i −Ex̄21k4
+supi,T E

°°D3T ¡EFzi x̄3,i −Ex̄3,i¢°°4
+supN,T sup1≤i≤N E kD3T (EFz x̄3 −Ex̄3)k4
+supN,T sup1≤i≤N kD3T (Ex̄3,i −Ex̄3)k

+supN sup1≤i≤N E kzi − z̄k4


. (65)

For the required result, we need to show that all of the terms in the right-hand
side of the inequality (65) are bounded. Notice that for some finite constant
M4,

kD1T (Ex̄1,i −Ex̄1)k4

→
°°°°°H1

Ã
Θ1,i − 1

N

X
i

Θ1,i

!°°°°° (uniformly in i as T →∞)
≤ 2 kH1k sup

i
kΘ1,ik < M4,

and

kEx̄21,i −Ex̄21k4

→
°°°°°Θ21,i − 1

N

X
i

Θ21,i

°°°°°
4

(uniformly in i as T →∞)

≤ 2 sup
i
kΘ21,ik4 < M4.

So,

sup
N,T

sup
1≤i≤N

kD1T (Ex̄1,i −Ex̄1)k4 , sup
N,T

sup
1≤i≤N

kEx̄21,i −Ex̄21k4 <∞. (66)

By Assumption 6(iii), the followings hold uniformly in i almost surely as T →
∞ : °°D31T ¡EFzi x̄31,i −Ex̄31,i¢°°4 → 0,°°D32T ¡EFzi x̄31,i −Ex̄31,i¢°°4 → kH32g32,i (zi)k4 ,°°D33T ¡EFzi x̄33,i −Ex̄33,i¢°°4 → kH33g33,i (zi)k4 .
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Notice that since
°°D3T ¡EFzix3,it −Ex3,it¢°°4 ≤ τ̃ (r)4 G̃ (zi)

4 by Assumption

6(iv), we have supi
°°D3kT ¡EFzi x̄3k,i −Ex̄3k,i¢°°4 ≤ ³R 10 τ̃ (r)4 dr´ supi G̃ (zi)4

for k = 1, 2, and 3. Therefore, by Lemma 10, we have

E
°°D3kT ¡EFzi x̄3k,i −Ex̄3k,i¢°°4

→ E

°°°°g3k,i (zi)Z 1

0

τ3k (r) dr

°°°°4 (uniformly in i)
≤

µ
E sup

i
kg3k,i (zi)k4

¶Ã°°°°Z 1

0

τ3k (r) dr

°°°°4
!
<∞, for k = 1, 2, 3,

where τ31 (r) = 0. So,

sup
i,T
E
°°D3T ¡EFzi x̄3,i −Ex̄3,i¢°°4 <∞. (67)

Similarly, it follows that

sup
N,T

sup
1≤i≤N

E kD3T (EFz x̄3 −Ex̄3,i)k4 <∞. (68)

In addition, notice that

sup
N,T

sup
1≤i≤N

kD3T (Ex̄3,i −Ex̄3)k

≤ sup
N,T

sup
1≤i≤N

°°°°°°
 D31T (Ex̄31,i −Ex̄31)
D32T (Ex̄32,i −Ex̄32)−H32µ̃g32,i
D33T (Ex̄33,i −Ex̄33)−H33µ̃g33,i

°°°°°° (69)

+ sup
N

sup
1≤i≤N

°°°°°°
 0
H32µ̃g32,i
H33µ̃g33,i

°°°°°° .
By Assumption 6(v), as T →∞,

sup
N

sup
1≤i≤N

°°°°°°
 D31T (Ex̄31,i −Ex̄31)
D32T (Ex̄32,i −Ex̄32)−H32µ̃g32,i
D33T (Ex̄33,i −Ex̄33)−H33µ̃g33,i

°°°°°°
= sup

N
sup

1≤i≤N
1

N

NX
j=1

°°°°°°°°


D31T (Ex̄31,i −Ex̄31,j)
D32T (Ex̄32,i −Ex̄32,j)−H32

³
µg32,i − µg32,j

´
D33T (Ex̄33,i −Ex̄33,j)−H33

³
µg33,i − µg33,j

´

°°°°°°°°

≤ sup
i,j

°°°°°°°°


D31T (Ex̄31,i −Ex̄31,j)
D32T (Ex̄32,i −Ex̄32,j)−H32

³
µg32,i − µg32,j

´
D33T (Ex̄33,i −Ex̄33,j)−H33

³
µg33,i − µg33,j

´

°°°°°°°°→ 0.
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Therefore, the first term (69) is finite. The second term in (69) is also finite since
supi

°°µg32,i°° , supi °°µg33,i°° <∞ as assumed in Assumption 6(v). Therefore,

sup
N,T

sup
1≤i≤N

kD3T (Ex̄3,i −Ex̄3)k <∞.

In addition, by Assumption 5,

sup
N

sup
1≤i≤N

E kzi − z̄k4 <∞. (70)

Therefore, from (66)− (70) we have

sup
N,T

sup
1≤i≤N

E kI2,i,NT k4 <∞.

Finally, since I3,NT =
1
N

P
i I1,i,NT ,

sup
N,T

E kI3,NT k4

≤ sup
N,T

E

Ã
1

N

X
i

kI1,i,NTk
!4

(by triangle inequality)

≤ sup
N,T

sup
1≤i≤N

E kI1,i,NTk4 (by Holder’s inequality)
< ∞. ¥

Part (c)
Recall that under Assumption 11, conditional on Fw, ui is independently

distributed with mean
w̃0iDT√
N

λ, variance σ2u, and κ4u = EFw (ui −EFwui)4 <∞,
where λ is a nonrandom vector inRk+g. So, E (DT w̃iui) = 1√

N
E
³
DT w̃iw̃

0
iDT

´
λ.

Define Qi,T = DT w̃i (ui −EFwui) ; and let ι ∈ Rk+g with kιk = 1. Then, we
can complete the proof by showing that as (N,T →∞) ,

1√
N

X
i

ι0Qi,T ⇒ N
¡
0,σ2uι

0Ξι
¢
. (71)

This is so because this condition, together with the Cramer-Wold device, As-
sumption 11 and Part (a), implies that

1√
N

X
i

DT w̃iui =
1√
N

X
i

DT w̃iEFwui +
1√
N

X
i

Qi,T

=
1

N

X
i

DT w̃iw̃
0
iDTλ+

1√
N

X
i

Qi,T

⇒ N
¡
Ξλ,σ2uΞ

¢
.
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Now we start the proof of (71) . Let s2i,T = E (ι
0Qi,T )

2
and S2N,T =

P
i s
2
i,T .

Under Assumption 11, we have

s2i,T = E (ι0Qi,T )
2

= ι0E
h³
EFw (ui −EFwui)2

´
DT w̃iw̃

0
iDT

i
ι

= σ2uE [ι
0DT w̃iw̃0iDT ι] .

By Part (a),
1

N

X
i

ι0DT w̃iw̃0iDT ι→p ι
0Ξι > 0,

as (N,T →∞) . By Part (b),

sup
N,T

sup
1≤i≤N

E kι0DT w̃ik2 1 {kι0DT w̃ik > M}→ 0,

as M →∞, and so kι0DT w̃ik2 is uniformly integrable in N,T. Then, by Vitali’s
lemma, it follows that

1

N
S2N,T → σ2uι

0Ξι > 0,

as (N,T →∞) . Thus, for our required result of (71), it is sufficient to showX
i

ι0Qi,T
SN,T

⇒ N (0, 1) , (72)

as (N,T →∞). Let Pi,NT = ι0Qi,T

SN,T
.Note that, under Assumption 9, E (Pi,NT ) =

0 and
P
iEP

2
i,NT = 1. According to Theorem 2 of Phillips and Moon (1999),

the weak convergence in (72) follows if we can show thatX
i

EP 2i,NT 1
©¯̄
P 2i,NT

¯̄
> ε

ª→ 0 for all ε > 0, (73)

as (N,T →∞). Since

sup
N,T

sup
1≤i≤N

E kQi,T k4

≤ kιk8 sup
N,T

sup
1≤i≤N

E
³
kDT w̃ik4

³
EFw (ui −EFwui)4

´´
≤ κ4u sup

N,T
sup

1≤i≤N
E kDT w̃ik4 <∞,

the Lindeberg-Feller condition (73) follows, and we have all the desired results.
¥

Part (d)
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Since ṽi is independent of w̃i, we have

E

°°°°° 1√
N

X
i

DT w̃iṽi

°°°°°
2

= E

°°°°° 1√
N

X
i

DT w̃iv̄i

°°°°°
2

=
σ2v
T
tr

Ã
1

N

X
i

EDT w̃iw̃
0
iDT

!

≤ σ2v
T
sup
N,T

sup
1≤i≤N

E kDT w̃ik2 → 0,

as (N,T →∞) , where the last convergence holds because Part (b) warrants

sup
N,T

sup
1≤i≤N

E kDT w̃ik2 <∞. ¥

Proof of Lemma 2
Part (a)
By definition, we have

1

N

X
i

1

T

X
t

GxT (xit − x̄i) (xit − x̄i)0GxT

=
1

N

X
i

1

T

X
t

GxT (xit −Eixit +Eixit −Eix̄i +Eix̄i − x̄i)

× (xit −Eixit +Eixit −Eix̄i +Eix̄i − x̄i)0GxT ,
=

1

N

X
i

1

T

X
t

(III1,iT+III2,iT+III3,iT )(III1,iT+III2,iT+III3,iT )
0
, say.

First, we show that

1

N

X
i

1

T

X
t

III1,iT III
0
1,iT

=
1

N

X
i

1

T

X
t

D1T (x1,it −Ex1,it)x2,it −Ex2,it
x3,it −Ex3,it

D1T (x1,it − Ex1,it)x2,it −Ex2,it
x3,it −Ex3,it

0

→ p

 0 0 0
0 Φ22 Φ23
0 Φ023 Φ33

 . (74)

For this, set

QiT =
1

T

X
t

 D1T (x1,it −Ex1,it)
x2,it −Ex2,it
x3,it −Ex3,it

 D1T (x1,it −Ex1,it)
x2,it −Ex2,it
x3,it −Ex3,it

0

.
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By the Cauchy-Schwarz inequality,

kQiT k2 ≤

1
T

X
t

°°°°°°
D1T (x1,it −Ex1,it)x2,it −Ex2,it
x3,it −Ex3,it

°°°°°°
2

2

≤ M1

Ã
1

T

X
t

½ kD1T (x1,it −Ex1,it)k4 + kx2,it −Ex2,itk4
+ kx3,it −Ex3,itk4

¾!
.

Notice that by Assumptions 2(i), 3(iii),

sup
i,t
E kx1,it −Ex1,itk4 , sup

i,t
E kx2,it −Ex2,itk4 <∞, (75)

and by Assumption 4(iii) and Assumption 6(iii),

sup
i,t
E kx3,it −Ex3,itk4

≤ M1

µ
sup
i,t
EFzi

°°x3,it −EFzix3,it°°4¶+M1E
°°EFzix3,it −Ex3,it°°4

< ∞. (76)

Thus, we have
sup
i,T
E kQiT k2 <∞.

From this,

sup
i,T
E kQiT k 1 {kQiT k > M} ≤

supi,T E kQiTk2
M

→ 0,

as M →∞. By Corollary 14 and Assumption 8(ii), then,
1

N

X
i

1

T

X
t

III1,iT III
0
1,iT

=
1

N

X
i

QiT →p lim
N,T

1

N

X
i

EQiT =

 0 0 0
0 Φ22 Φ23
0 Φ023 Φ33

 .
Next, by Assumption 6(i) and (ii), Lemma 11, and Lemma 12, we have

1

N

X
i

1

T

X
t

III2,iT III
0
2,iT

=
1

N

X
i

1

T

X
t

D1T (Ex1,it −Ex̄1,i)Ex2,it −Ex̄2,i
Ex3,it −Ex̄3,i

D1T (Ex1,it −Ex̄1,i)Ex2,it −Ex̄2,i
Ex3,it −Ex̄3,i

0

→
 R 10 ¡τ1 − R τ1¢ ¡limN 1

N

P
iΘ1,iΘ

0
1,i

¢ ¡
τ1 −

R
τ1
¢0
dr 0 0

0 0 0
0 0 0

 .(77)
50



In addition, we have

E

°°°°° 1N X
i

1

T

X
t

III3,iT III
0
3,iT

°°°°°
= E

°°°°°° 1N
X
i

1

T

X
t

 D1T (x1,it −Ex1,it)
(x2,it −Ex2,it)
(x3,it −Ex3,it)

°°°°°°
2

≤ 1

N2

X
i

1

T

X
t

E

°°°°°°
 D1T (x1,it −Ex1,it)
(x2,it −Ex2,it)
(x3,it −Ex3,it)

°°°°°°
4

→ p0, (78)

as (N,T →∞), as shown in (75) and (76). Thus,
1

N

X
i

1

T

X
t

III3,iT III
0
3,iT →p 0.

From the Cauchy-Schwarz inequality, (74) , (77) and (78) , we have

1

N

X
i

1

T

X
t

III1,iT III
0
2,iT → p0;

1

N

X
i

1

T

X
t

III1,iT III
0
3,iT →p 0;

1

N

X
i

1

T

X
t

III2,iT III
0
3,iT → p0,

as (N,T →∞), Combining all of these, we have
1

N

X
i

1

T

X
t

GxT (xit − x̄i) (xit − x̄i)0GxT

→ p

 R 1
0

¡
τ1 −

R
τ1
¢ ¡
limN

1
N

P
iΘ1,iΘ

0
1,i

¢ ¡
τ1 −

R
τ1
¢0
dr 0 0

0 Φ22 Φ23
0 Φ023 Φ33


≡ Ψx.

as (N,T →∞).
Part (b)
First, let Qi,T =

1√
T

P
tGxT (xit − x̄i) vit; and let ι ∈ Rk with kιk = 1. If

we can show that as (N,T →∞) ,
1√
N

X
i

ι0Qi,T ⇒ N
¡
0,σ2vι

0Ψxι
¢
, (79)

then, the Cramer-Wold device implies our desired result. Now let s2i,T =

E (ι0Qi,T )
2
and S2NT =

P
i s
2
i,T . Using similar arguments for (74) — (78) , it

51



is possible to show that

1

N
S2NT = σ2vι

0E

Ã
1

N

X
i

1

T

X
t

GxT (xit − x̄i) (xit − x̄i)0GxT
!
ιk

→ σ2vι
0Ψxι > 0, (80)

as (N,T →∞) . So, the asymptotic normality in (79) holds ifX
i

ι0Qi,T
SNT

⇒ N (0, 1) , (81)

as (N,T →∞) . Let Pi,NT = ι0Qi,T

SN,T
. Then, E (Pi,NT ) = 0 and

P
iEP

2
i,NT = 1.

Thus, by the central limit theorem of the double indexed process (e.g., see
Theorem 2 in Phillips and Moon, 1999), we can claim that (81) holds, if we can
show that X

i

EP 2i,NT 1
©¯̄
P 2i,NT

¯̄
> ε

ª→ 0 for all ε > 0, (82)

as (N,T →∞).
Now, in view of (80) , condition (82) holds if

sup
i,T
E kι0Qi,T k4 ≤ sup

i,T
E kQi,T k4 <∞. (83)

Note for some constant M1 that

sup
i,T
E kQi,T k4

= sup
i,T
E

°°°°° 1√
T

X
t

Gx,T (xit − x̄i) vit
°°°°°
4

= sup
i,T
E

tr
 1
T2

X
t,s,p,q

µ
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T
⊗Gx,T (xip − x̄i) (xiq − x̄i)0Gx,T

¶
×E (vitvisvipviq)




≤ M1 sup
i,T

¯̄̄̄
¯̄̄E
Ã
1
T2

X
t,s

tr

µ
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T
⊗Gx,T (xit − x̄i) (xis − x̄i)0Gx,T

¶!
×E ¡v2itv2is¢

¯̄̄̄
¯̄̄

+M1 sup
i,T

¯̄̄̄
¯̄̄E
Ã
1
T2

X
t,s

tr

µ
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T
⊗Gx,T (xis − x̄i) (xit − x̄i)0Gx,T

¶!
×E ¡v2itv2is¢

¯̄̄̄
¯̄̄

+M1 sup
i,T

¯̄̄̄
¯̄̄E
Ã
1
T2

X
t,s

tr

µ
Gx,T (xit − x̄i) (xit − x̄i)0Gx,T
⊗Gx,T (xis − x̄i) (xis − x̄i)0Gx,T

¶!
×E ¡v2itv2is¢

¯̄̄̄
¯̄̄ . (84)

52



Using the fact that tr (A⊗B) = tr (A) tr (B) and the Cauchy-Schwarz inequal-
ity, we have

1

T 2

X
t

X
s

tr

µ
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T
⊗Gx,T (xit − x̄i) (xis − x̄i)0Gx,T

¶
=

1

T 2

X
t

X
s

©
tr
£
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T

¤ª2
≤

"
1

T

X
t

kGx,T (xit − x̄i)k2
#2
.

Similarly,

1

T 2

X
t

X
s

tr

µ
Gx,T (xit − x̄i) (xis − x̄i)0Gx,T
⊗Gx,T (xis − x̄i) (xit − x̄i)0Gx,T

¶

≤
"
1

T

X
t

kGx,T (xit − x̄i)k2
#2
,

and

1

T 2

X
t

X
s

tr

µ
Gx,T (xit − x̄i) (xit − x̄i)0Gx,T
⊗Gx,T (xis − x̄i) (xis − x̄i)0Gx,T

¶

=

Ã
1

T

X
t

tr
¡
Gx,T (xit − x̄i) (xit − x̄i)0Gx,T

¢!2

=

"
1

T

X
t

kGx,T (xit − x̄i)k2
#2
.

Thus, the right hand side of (84) is less than or equal to

3M1κ
4
v sup
i,T

sup
1≤t≤T

E

"
1

T

X
t

kGx,T (xit − x̄i)k2
#2
.

Note that

sup
i,T

sup
1≤t≤T

E

"
1

T

X
t

kGx,T (xit − x̄i)k2
#2

≤ sup
i,T

sup
1≤t≤T

E

"
1

T

X
t

kGx,Txitk2
#2

≤ M2

Ã
supi,T sup1≤t≤T E kD1Tx1,itk4 + supi,T sup1≤t≤T E kx2,itk4

+supi,T sup1≤t≤T E kx3,itk4
!
,
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for some constant M2 <∞. By Assumptions 2 and 6(i), for t = [Tr] and finite
constant M2, we have

sup
i,T

sup
1≤t≤T

E kD1Tx1,itk4

≤ sup
i,T

sup
1≤t≤T

M3

³
kD1Tk4E k(x1,it −Ex1,it)k4 + kD1TEx1,itk4

´
→ sup

i
sup
r∈[0,1]

kτ1 (r)Θ1,ik4 <∞.

Next, similarly, by Assumptions 3(ii) and (iii),

sup
i,T

sup
1≤t≤T

E kx2,itk4 ≤ sup
i,T

sup
1≤t≤T

M3

h
Ekx2,it −Ex2,itk4+kEx2,itk4

i
< ∞,

and by Assumptions 4(ii) and (iii) and 6(iii) and (iv),

sup
i,T

sup
1≤t≤T

E kx3,itk4 ≤ sup
i,T

sup
1≤t≤T

M3

³
E
°°x3,it −EFzix3,it°°4 + kEx3,itk4´

≤ M2

 E
³
supi,t

°°x3,it −EFzix3,it°°4´
+supi,tE

°°EFzix3,it −Ex3,it°°4
+supi,t kEx3,itk4


< ∞.

Therefore,

sup
i,T

sup
1≤t≤T

E

"
1

T

X
t

kGx,T (xit − x̄i)k2
#2
< M,

which yields (83). ¥
Part (c)
By Lemma 16(a). ¥

Part (d)
By Lemma 16(d). ¥

Proof of Lemma 3
By Lemma 16(c). ¥

Proof of Lemma 4
Write

1

N

P
iDT ewieui= 1N P

iDT ewi (ui −EFwui) +µ 1N P
iDT ewiw̃0iDT¶λ. (85)

Notice that by Assumption 10,

E

Ã
EFw

°°°° 1N P
iDT ewi (ui −EFwui)°°°°2

!
=

σ2u
N
trE

µ
1

N

P
iDT ewiw̃0iDT¶ .
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But, by Lemma 16(b),

trE

µ
1

N

P
iDT ewiw̃0iDT¶ < M,

for some constant M. This implies that

E

°°°° 1N P
iDT ewi (ui −EFwui)°°°°2 → 0,

as (N,T →∞). Thus, by Chebyshev’s inequality,
1

N

P
iDT ewi (ui − EFwui)→p 0, (86)

as (N,T →∞). Then, Lemma 16(a), (85) and (86) imply our desired result. ¥
Proof of Theorem 5
By Lemma 2(a) and (b). ¥

Proof of Theorem 6
By Lemma 2(c), (d), and Lemma 3. ¥

Before we prove the rest of the theorems given in Section 4, we introduce
the following notation:

A1 =
1
N

P
i
1
T

P
t (xit − x̄i) (xit − x̄i)0 ;

A2 =
1
N

P
i
1
T

P
t (xit − x̄i) (vit − v̄i) ;

A3 =
1
N

P
i x̃ix̃

0
i; A4 =

1
N

P
i x̃iũi; A5 =

1
N

P
i x̃iṽi;

B3 =
1
N

P
i z̃iz̃

0
i; B4 =

1
N

P
i z̃iũi; B5 =

1
N

P
i z̃iṽi;

C = 1
N

P
i x̃iz̃

0
i;

F1 = A3 − CB−13 C 0; F2 = A4 +A5 − CB−13 (B4 +B5) .

(87)

Proof of Theorem 7
Using the notation given in (87) , we can express the GLS estimator β̂g by

√
NTG−1x,T

³
β̂g − β

´
=

£
Gx,TA1Gx,T + θ2TGx,T

©
A3 − CB−13 C0

ª
Gx,T

¤−1
×
√
NTGx,T

©
A2 + θ2T

£
(A4 +A5)− CB−13 (B4 +B5)

¤ª
, (88)

where θT =
p
σ2v/(Tσ

2
u + σ2v).

Part (a)
First, consider

θ2TGx,T
©
A3 − CB−13 C 0

ª
Gx,T

= θ2TGx,TD
−1
x,T

½ 1
N

P
iDx,T x̃ix̃

0
iDx,T

− ¡ 1N PiDx,T x̃iz̃
0
i

¢ ¡
1
N

P
i z̃iz̃

0
i

¢−1 ¡ 1
N

P
i z̃ix̃

0
iDx,T

¢ ¾
×D−1x,TGx,T .
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By Lemma 2,½ 1
N

P
iDx,T x̃ix̃

0
iDx,T

− ¡ 1N PiDx,T x̃iz̃
0
i

¢ ¡
1
N

P
i z̃iz̃

0
i

¢−1 ¡ 1
N

P
i z̃ix̃

0
iDx,T

¢ ¾ = Op (1) ,
and by definition,

Gx,TD
−1
x,T = J

−1
x,T = O (1) ,

as (N,T →∞) . Thus,
θ2TGx,T

©
A3 − CB−13 C 0

ª
Gx,T = Op

¡
θ2T
¢
= op (1) . (89)

Next, consider
√
NTGx,T

©
θ2T
£
(A4 +A5)− CB−13 (B4 +B5)

¤ª
= θ2T

√
TGx,TD

−1
x,T

( 1√
N

P
iDx,T x̃i(ũi + ṽi)

− ¡ 1N PiDx,T x̃iz̃
0
i

¢¡
1
N

P
i z̃iz̃

0
i

¢−1³ 1√
N

P
i z̃i (ũi + ṽi)́

)
.

By Lemma 2, under the local alternatives to random effects (Assumption 11),( 1√
N

P
iDx,T x̃i(ũi + ṽi)

− ¡ 1N PiDx,T x̃iz̃
0
i

¢¡
1
N

P
i z̃iz̃

0
i

¢−1³ 1√
N

P
i z̃i (ũi + ṽi)́

)
= Op (1) .

By definition,

θ2T
√
TGx,TD

−1
x,T = O

µ
1√
T

¶
.

Thus,

√
NTGx,T

©
θ2T
£
(A4 +A5)−CB−13 (B4 +B5)

¤ª
=Op

µ
1√
T

¶
= op(1) . (90)

Substituting (89) and (90) into (88), we have

√
NT (bβg − β) = [Gx,TA1Gx,T + op(1)]

−1[
√
NTGx,TA2 + op(1)]

=
√
NT (bβw − β) + op(1).

The last equality results from Lemma 2(a), (b) and Theorem 5. ¥
Part (b)
Similarly to Part (a), we can easily show that under the assumptions given

in Part (b), the denominator in (88) is

1

NT

X
i

X
t

Gx,T (xit − x̄i) (xit − x̄i)0Gx,T + op (1) . (91)

Consider the second term of the numerator of (88):

θ2
√
TGx,T

( 1√
N

P
i x̃i(ũi + ṽi)

− ¡ 1N Pi x̃iz̃
0
i

¢¡
1
N

P
i z̃iz̃

0
i

¢−1³ 1√
N

P
i z̃i (ũi + ṽi)́

)
. (92)
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Notice that by Lemmas 2 and 4, under the fixed effect assumption (Assumption
10), the first term of (92) is

θ2
√
NTGx,T

1

N

X
i

x̃i(ũi + ṽi)

= θ2
√
NTGx,TD

−1
x,T

1

N

X
i

Dx,T x̃i(ũi + ṽi)

= θ2
√
NTGx,TD

−1
x,T {Ξxλ+ op (1)} ,

where we partition

Ξ =

µ
Ξxx Ξxz
Ξzx Ξzz

¶
conformably to the sizes of xit and zi, and set Ξx = (Ξxx,Ξxz) . Similarly, by
Lemmas 2 and 4, under the fixed effect assumption, the second term of (92) is

θ2T
√
NTGx,TD

−1
x,T


Ã
1

N

X
i

Dx,T x̃iz̃
0
i

!Ã
1

N

X
i

z̃iz̃
0
i

!−1Ã
1

N

X
i

z̃i (ũi + ṽi)

!
= θ2T

√
NTGx,TD

−1
x,T

©
ΞxzΞ

−1
zz Ξzλ+ op (1)

ª
.

Therefore, the limit of (92) is³
θ2T
√
NTGx,TD

−1
x,T

´ h³
Ξxx − ΞxzΞ−1zz Ξzx

... 0

´
λ+ op (1)

i
.

Recall that it is assumed that NT → c <∞. Also, recall that under the restric-
tions given in the theorem,Gx,T = diag (Ik22 , Ik3) andDx,T = diag

³√
TIk22 ,D3T

´
.

Then, letting λmax (A) denote the maximum eigenvalue of matrixA, we can have

λmax

³
θ2T
√
NTGx,TD

−1
x,T

´
= O (1)

r
N

T
λmax

µ
1√
T
Ik22 ,D

−1
3T

¶
→ 0.

So, under the assumptions of Part (b), the probability limit of the numerator
of (88) is

1√
NT

X
i

X
t

Gx,T x̃itṽit + op (1) . (93)

Combining (91) and (93), we can obtain Part (b). ¥

Proof of Theorem 8
Using the notation in (87) , we can express the GLS estimator γ̂g by

γ̂g − γ
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=

"
B3 − C 0

µ
1

θ2T
A1 +A3

¶−1
C

#−1

×
"
(B4 +B5)− C 0

µ
1

θ2T
A1 +A3

¶−1µ
1

θ2T
A2 + (A4 +A5)

¶#
. (94)

Part (a)
Notice that

C 0
µ
1

θ2T
A1 +A3

¶−1
C

= C 0Dx,T

µ
1

Tθ2T

√
TJx,TGx,TA1Gx,TJx,T

√
T +Dx,TA3Dx,T

¶−1
Dx,TC

= Tθ2T (C
0Dx,T )

J−1x,T√
T

Ã
Gx,TA1Gx,T

+
J−1x,T√
T
Dx,TA3Dx,T

J−1x,T√
T

!−1
J−1x,T√
T
(Dx,TC)

= Op

Ã
J−2x,T
T

!
= op (1) .

The third equality holds because the limit of Gx,TA1Gx,T is positive definite
(by Lemma 2(a) and Assumption 12), Tθ2T = O(1), and

Dx,TC, Gx,TA1Gx,T , Dx,TA3Dx,T = Op (1)

(by Lemma 2(a), (c)). The last equality results from the fact that

J−1x,T√
T
= o (1) .

Thus, as (N,T →∞) , the denominator of (94) is

B3 − C0
µ
1

θ2T
A1 +A3

¶−1
C = B3 + op (1) . (95)

Next, under both the random effects assumption (Assumption 9) and the
local alternatives (Assumption 11), it follows from Lemmas 2 and 3 that the
second term in the numerator of (94) is

C 0
µ
1

θ2
A1 +A3

¶−1µ
1

θ2
√
NA2 +

√
N (A4 +A5)

¶
= C 0Dx,T

µ
1

Tθ2
√
TJx,TGx,TA1Gx,TJx,T

√
T +Dx,TA3Dx,T

¶−1
×
Ã√

T

Tθ2
Jx,T
√
NTGx,TA2 +

√
NDx,T (A4 +A5)

!
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= Tθ2 (C0Dx,T )
J−1x,T√
T

Ã
Gx,TA1Gx,T +

J−1x,T√
T
Dx,TA3Dx,T

J−1x,T√
T

!−1

×
Ã
1

Tθ2
√
NTGx,TA2 +

J−1x,T√
T

√
NDx,T (A4 +A5)

!

= Op

Ã
J−1x,T√
T

!
= op (1) ,

as (N,T →∞) . Also, by Lemma 2(d), as (N,T →∞) ,
√
NB5 =

1√
N

X
i

z̃iṽi = op (1) .

Therefore, the numerator of (94) is

√
N

Ã
(B4+B5)− C0

µ
1

θ2T
A1+A3

¶−1µ
1

θ2T
A2 + (A4+A5)

¶!
=
√
NB4 + op (1) , (96)

as (N,T →∞) . In view of (94), (95) and (96) , we have

√
N
¡
γ̂g − γ

¢
=

Ã
1

N

X
i

z̃iz̃
0
i

!−1Ã
1√
N

X
i

z̃iũi

!
+ op (1) ,

as (N,T →∞) .
Finally, by Lemma 2(c) and Lemma 3, as (N,T →∞) ,

√
N
¡
γ̂g − γ

¢
=

Ã
1

N

X
i

z̃iz̃
0
i

!−1Ã
1√
N

X
i

z̃iũi

!
⇒ N

³
(l0zΞlz)

−1
(l0zΞλ) , (l

0
zΞlz)

−1´
,

as required. ¥
Part (b)
Under the assumptions in Part (b), as shown for the denominator of (94) ,

B3 − C0
µ
1

θ2T
A1 +A3

¶−1
C =

1

N

X
i

z̃iz̃
0
i + op (1)→p l

0
zΞlz, (97)

as (N,T →∞) . Next, consider the numerator of (94) ,"
(B4 +B5)− C 0

µ
1

θ2
A1 +A3

¶−1µ
1

θ2
A2 + (A4 +A5)

¶#
= (B4 +B5)
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−Tθ2 (C 0Dx,T )
J−1x,T√
T

Ã
Gx,TA1Gx,T +

J−1x,T√
T
Dx,TA3Dx,T

J−1x,T√
T

!−1

×
Ã

1√
NTθ2

√
NTGx,TA2 +

J−1x,T√
T
Dx,T (A4 +A5)

!
.

By Lemma 2(d), (b), and (d),

B5 = op (1) ,√
NTGx,TA2 = Op (1) ,

Dx,TA5 = Op (1) ,

respectively. Under the fixed effect assumption (Assumption 10), Lemma 4
implies that

Dx,TA4 = Op (1) ,

as (N,T →∞) . Since
1√
NTθ2T

,
J−1x,T√
T
= o (1) ,

and

Tθ2 (C0Dx,T )
J−1x,T√
T

Ã
Gx,TA1Gx,T +

J−1x,T√
T
Dx,TA3Dx,T

J−1x,T√
T

!−1
= op (1)

(as shown in Part (a)), we have

(B4 +B5)− C 0
µ
1

θ2
A1 +A3

¶−1µ
1

θ2
A2 + (A4 +A5)

¶
= B4 + op (1) . (98)

But, according to Lemma 4,

B4 =
1

N

X
i

z̃iũi →p l
0
zΞλ. (99)

Therefore, (94), (97), (98) and (99) imply

γ̂g →p γ + (l
0
zΞlz)

−1
l0zΞλ,

as (N,T →∞) . ¥

Proof of Theorem 9
Using the notation in (87), we can express the Hausman test statistic by

HMNT =
h¡
A1 + θ2TF1

¢−1√
NT

¡
A2 + θ2TF2

¢−A−11 √NTA2i0
×
h
σ2vA

−1
1 − σ2v

¡
A1 + θ2TF1

¢−1i−1
×
h¡
A1 + θ2TF1

¢−1√
NT

¡
A2 + θ2TF2

¢−A−11 √NTA2i .
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Observe that for any conformable matrices P and Q, we have

(P +Q)
−1 − P−1 = −P−1QP−1 + (P +Q)−1QP−1QP−1.

Using this fact, we write¡
A1 + θ2TF1

¢−1 −A−11 = −θ2TA−11 F1A−11 + θ4TR1, (100)

where R1 =
¡
A1 + θ2TF1

¢−1
F1A

−1
1 F1A

−1
1 . Define

Q = ¡A1 + θ2TF1
¢−1√

NT
¡
A2 + θ2TF2

¢−A−11 √NTA2.
Then,

Q
=
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¢−A−11 √NT ¡A2 + θ2TF2
¢

+A−11
√
NTθ2TF2

=
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¢−1 −A−11 o√NT ©A2 + θ2TF2
ª
+A−11

√
NTθ2TF2
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¡
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√
NT

©
A2 + θ2TF2

ª
+A−11

√
NTθ2TF2
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√
NT

©
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ª
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√
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−1
1 A2−A−11 F2

¤−θ2T√NT· θ2TA
−1
1 F1A

−1
1 F2
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©
A2 + θ2TF2

ª̧
= −θ2T

√
NT

£
A−11 F1A

−1
1 A2 −A−11 F2

¤− θ4T
√
NTR2, (101)

where R2 = A
−1
1 F1A

−1
1 F2 −R1

©
A2 + θ2TF2

ª
.

In view of (100) and (101) , we now can rewrite the Hausman statistic as

HMNT = Q0
h
σ2vA

−1
1 − σ2v

¡
A1 + θ2TF1

¢−1i−1Q
= θT

√
NT

£
A−11 F1A

−1
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¤0
× £σ2vA−11 F1A−11 − σ2vθ

2
TR1

¤−1
×θT
√
NT

£
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−1
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¤
;

or equivalently,

HMNT

= θT
√
NT
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−1
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,
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where G1 = G
−1
x,TA

−1
1 G−1x,T .

Notice that

θ2T

³
G−1x,TR1G

−1
x,T

´
= θ2TG

−1
x,T

¡
A1 + θ2F1

¢−1
G−1x,T

×Gx,TF1Gx,TG1Gx,TF1Gx,TG1.
Lemma 2(a) and Assumption 12 imply

G1 = Op (1) .

In addition, by Lemma 2(c)

Gx,TF1Gx,T = J
−1
x,TDx,TF1Dx,TJ

−1
x,T = Op (1) , (102)

since J−1x,T = O (1) . Thus,

σ2vθ
2
T

³
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x,T

´
= Op

¡
θ2T
¢
= op (1) . (103)

Now, consider

θT
√
NTθ2TG

−1
x,TR2

= θT
√
T
h√
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x,T
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´ .
Under the local alternatives (Assumption 11), we may deduce from Lemmas 2
and 3 that

G1, Gx,TF1Gx,T , Gx,T
√
NF2 = Op (1) ;

θ2T

³
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´
,
√
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Since θT
√
T = O (1) , we have

θT
√
NTθ2TG

−1
x,TR2 = O (1)

£
θ2TOp (1) + op (1)

¤
= op (1) . (104)

Using the results (103) and (104) , we now can approximate the Hausman
statistic as follows:
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σv
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NT
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Here, the last line holds because under the local alternative hypotheses,

J−1x,TDx,TF1Dx,TJ
−1
x,T = Op (1) ,

by (102), and
θT
σv
G1

³√
NTGx,TA2

´
= Op (θT ) = op (1) ,

by Lemma 2(a), (b) and Assumption 12.
Finally, by Lemma 2(c), as (N,T →∞) ,
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Also, Lemmas 2(d) and 3 imply that under the local alternative hypotheses, as
(N,T →∞) ,
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.

As (N,T →∞) , θT
σv

√
T → 1

σu
. Therefore, under the hypothesis of random ef-

fects,
HMNT ⇒ χ2k,

a χ2 distribution with the degrees of freedom equal to k. In contrast, under the
local alternative hypotheses,

HMNT ⇒ χ2k (η) ,

where η is the noncentral parameter.
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