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Abstract

All empirical models of earnings processes in the literature assume a
good deal of homogeneity. For example, all authors assume either that
everyorne has a unit root process or that everyone has a stationary process.
In contrast to this we model earnings processes allowing for lots of het-
erogeneity between agents. To do this we have to formulate a series of
increasingly complex processes which make maximum likelihood or GMM
procedures very onerous. To avoid this we use a simulated minimum dis-
tance (SMD) estimation procedure. This is the first time that such an
estimator has been applied to dynamic panel data models. We fit our mod-
els to a variety of statistics including most of those considered by previous
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comments. We are grateful to Mette Lien Larsen for research assistance. This research was
supported by the Danish Social Science Research Foundation (SSF).



investigators (for example, trends in the cross-section variance and tran-
sition probabilities from low income states). The principal sample we use
is of a group of Danish male workers followed for 16 years. The sample
we draw is very homogeneous in terms of observables such as education,
age, experience, marital status and all have full year, full time employment
during the period considered. Despite this observable homogeneity we find
much greater latent heterogeneity than previous investigators. Applying
our methods to a more heterogeneous sample drawn from the PSID we find
a completely different but still very heterogeneous process is needed. This
suggests that not only do processes vary a lot within groups they also vary
between different samples so that detailed modelling is required in each
instance. We show that allowance for heterogeneity makes substantial dif-
ferences to inferences of interest. For example, we find that workers appear
to trade off mean for variance in their choice of earnings process. Such a
conclusion would be ruled out by a model that did not allow for correlated
heterogeneity.

1. Introduction.

Estimates of the earnings process facing individuals and households are required
for a number of purposes. These include: testing between different models of the
determinants of income distribution (see Neal and Rosen (2000)); determining
the earnings risk faced by individuals and households (see Carroll and Samwick
(1997)); modelling the incidence and persistence of low income spells (see Atkin-
son, Bourguignon and Morrisson (1992)); modelling the time series variation in
the earnings distribution (see Gottschalk (1997)); modelling labour supply (see
Abowd and Card (1989)); the calibration of consumption and saving models and
dynamic GE models (see Browning, Heckman and Hansen (2000)), modelling an-
ticipated earnings growth for use in consumption Euler equations (see Browning
and Lusardi (1996)) and predicting future earnings paths given individual infor-
mation (Chamberlain and Hirano (1997). We shall return to a discussion of these
issues but for now this will suffice to motivate our interest in estimating earnings
processes.

In Table A1 in Appendix A we present a summary of a number of the significant
contributions to the earnings dynamics literature. Two important features emerge
from this Table. First, whatever the process chosen, only limited allowance is made
for heterogeneity. A second, related feature is that some investigators assume
that everyone has a stationary process and others that everyone has a unit root



but no one allows that some agents may have a stationary process and others
a unit root. For a number of reasons it may be that the distinction between
unit root and stationary processes is not too important if we impose that all
workers are in one or the other category. First, on the estimation side, if the
auto-regressive (AR) parameter in the stationary model is close to unity then
with a short time series (our panel covers 16 years) it is difficult to distinguish
between the two processes unless we impose enough structure so that we can
also exploit the cross-section variation. Second, in most applications we take the
earning process to have a finite horizon (35 years, say) so that the impacts of
shocks never completely disappear even for stationary process. Finally, for many
uses of our estimates, it is the path of future discounted earnings flows that is
important. If we take a discount rate of, say, three percent then much of the
distinction between the ‘permanent’ effects of shocks in a unit root process and in
a stationary process are lost. Suppose, however, that some agents have a unit root
and others have a stationary process with a relatively small AR parameter. In a
model in which we impose that everyone has the same process this will likely lead
to a conclusion that the common process is stationary with a high AR parameter
(and, potentially, the appearance of a spurious moving average in the errors since
we are mixing heterogeneous AR processes). It will also lead to considerable bias
in the estimation of the mean long run effects of an earnings shock.

As we shall see below, simple processes with limited heterogeneity are unable
to account for the observed facts. There are two broad reactions to this: we
could allow for more complicated processes (see Meghir and Pistaferri (2001)) or
we could allow for more heterogeneity. It is the latter line that we follow be-
low. Other investigators have also followed this path but in a limited fashion. In
particular, it is always assumed that everyone has the same process, but with,
for instance, different means and/or variances!. We are sceptical that everyone
has the same process with much the same parameters. Rather it may be that
different agents have different processes - some with a unit root, some with a
stationary AR(1) and others with an MA(1) process, for example. Mixing from
different populations with different processes is known to lead to more compli-
cated processes if the pooled data is treated as homogeneous. Given this, our
approach is to allow for a good deal more heterogeneity than previous investiga-
tors. We shall show that models that only allow for heterogeneity in the levels

I This is also true of the ‘large T, large N’ panel data literature on unit roots which always
tests between everyone having a unit and no one having a unit root, see Baltagi and Kao (2000)
for a recent survey.



perform very poorly. We then show that there is some improvement if we allow
for uncorrelated heterogeneity (‘random coefficients’ or ‘random effects’) in certain
dimensions but this still does not take us very far towards a satisfactory fit to the
data. Thus we have to allow for correlated heterogeneity which gives rise to the
usual ‘initial conditions’ problem (see, for example, Hsiao (1986), chapter 4). We
adopt the approach of allowing that the unobserved heterogeneity is a parametric
random function of the initial conditions (see, for example, Chamberlain (1980),
Anderson and Hsiao (1982), Blundell and Smith (1990) and Wooldridge (2000)).
For example, for a stationary AR(1) process with different means for each agent
we might allow that the mean is a function of the initial values plus a random
disturbance term. Parametric modelling of correlated heterogeneity has a num-
ber of advantages. First, it can accommodate stationary models with the initial
conditions given by the process as a special case, but it is not restricted to this.
This is particularly useful if the model is, in fact, non-stationary since then the
initial values do not have a distribution that is readily related to the process. A
second advantage of this way of incorporating heterogeneity is that it is easy to
implement. This is important in our context since we shall be undertaking a good
deal of exploratory analysis. A third advantage is that we can establish consis-
tency of our estimator as the number of cross-section units increases, holding the
number of time periods constant. That is, this avoids the ‘incidental parameters’
problem even when we cannot difference away the latter. A final and important
advantage, which is particularly emphasised by Wooldridge (2000), is that this
procedure allows us to generate quantitative predictions consequent on a change
in the underlying process. For example, suppose the government introduces a new
policy that reduces the short run cross-section variance of earnings (for example,
by increasing income tax progressivity). Examples of outcomes that we are inter-
ested in are the consequent changes in the distribution of short run and long run
risk facing an ‘average’ household and the persistence of poverty. To calculate
these from the estimates of the individual earnings processes requires more than
consistent estimates of the common parameters of the processes, it also requires a
explicit specification of the heterogeneity.? If we know the functional relationship
between heterogeneity and initial conditions then we can calculate the required
outcomes. The main disadvantage of the parametric approach, as compared with
a semi-parametric approach (which would also give consistency as the number of
cross-section units becomes large) is precisely that we have to make parametric

20f course, there may also be general equilibrium effects from such a change. We are here
implicitly making whatever ancillary assumptions are needed on what else is being held constant.



assumptions. The discipline here is that the final model has to fit a wide range of
different statistics.

There are three broad approaches to the econometric analysis in this context.
One option is to first conduct an analysis of time series on each person and then to
use this to generate a model of unobserved heterogeneity using parametric distri-
butions for the unknown parameters - a ‘bottom-up’ approach. The problem with
following this strategy is that the individual estimates suffer from considerable
small sample and endogeneity biases. It might be possible to implement analytic
or simulation based small sample corrections to the estimators properties (see,
for example, Shaman and Stine (1988a and 1988b), Kiviet and Kréamer (1992) or
Kiviet and Phillips (1998)) but these corrections impose stronger assumptions on
the distributional properties of the errors than those we would like to impose a
priori. A second alternative is to specify a general joint distribution of parameters
and then, using either conditional maximum likelihood (CML) or GMM, to ‘test
down’ to a more parsimonious model. The main problem with this approach is
that we do not have any prior idea at all about the distribution of the parameters.
Which parameters should be heterogenous and what (joint) distribution should
we take for them? Nowhere in the literature is there any indication of how to find
a starting general distribution. The third general approach, which we follow here,
is to conduct an explicit exploratory analysis of a series of models starting with
(restricted) consensus models and moving to more general model in a series of
steps. At each stage the generalisation is chosen to deal with the worst empirical
failing of the current model (a ‘fire fighting’ strategy). This procedure is not, of
course, path independent (which is generally true of any exploratory analysis) but
if, as we do, we end up with a model that captures all of the different aspects
of the data the literature has considered then it may be satisfactory. Of course,
there may be other general models that do as well and then identification would
require the use of additional information.

This exploratory approach requires the fitting of a relatively large number of
more and more complicated models. To fit these models we use what has come
to be known as Simulated Minimum Distance (SMD). This was first introduced
in Lee and Ingram (1990) in a time series context. It is also used in Duffie
and Singleton (1993) in an asset pricing model using time series data and Hall
and Rust (1999) (who suggest the term SMD) who employ it in a time series
model with sample based observations. It is closely related to other simulation
methods such as the Method of Simulated Moments (see Stern (1997)); indirect
inference (see Gourieroux, Monfort and Renault (1993)) and Efficient Method of



Moments (see Gallant and Tauchen (1996)). As far as we aware this is the first
application of SMD to panel data. SMD proceeds in a number of steps. First
we calculate some ‘well chosen’ statistics of the data (these are known as sample
auxiliary parameters). If we do not know the data generating process then these
sample auxiliary parameters have an unknown probability limit (as the number
of cross-section units becomes large). Next we take a parametric model for the
data generating process and simulate for a particular parameter value. Then we
calculate the value of the auxiliary parameters for the simulated data. If the
model is well chosen in a certain well defined sense and we have the ‘correct’ value
for the model parameters then these simulated auxiliary parameters have the
same (unknown) probability limit as the sample auxiliary parameters. The SMD
estimator of the model parameters is then the value of the model parameters that
minimises the weighted distance between the sample auxiliary parameters and the
simulated auxiliary parameters.

There are several advantages to using SMD rather than CML or GMM tech-
niques. The main advantage is that it is very easy to use since we need to conduct
only informal prior analysis of the relationship between the model and the data
subject to the identifying conditions discussed below which require that the auxil-
iary parameters chosen be ‘relevant’. This is particularly important in exploratory
analysis in which we examine a number of quite different models in order to capture
the heterogeneity in the processes. Although it is possible to derive a likelihood
function for each model we consider, it would be very arduous. It would also
be disheartening since we typically discard any model quite quickly. A second
and closely related advantage is that SMD can be used even when the likelihood
function is very difficult (or even impossible) to formulate. For example, in the
models below we wish to make allowance for considerable correlated heterogene-
ity. Likelihood functions for this are not easily derived. A third advantage is
that we can fit to the statistics of the data that are of direct substantive interest.
For example, for earnings processes we often interested in the dynamics of low
earnings spells so statistics that capture this are natural choices to include in our
set of auxiliary parameters. A fourth advantage is that when a simpler model fits
badly the SMD procedure often suggests a very natural dimension in which to
generalise the model. Finally, SMD does preclude the use of more conventional
techniques. Once a particular model has been selected that fits the data well in
all the dimensions considered we can adopt, say, a conditional ML scheme for the
final estimation. Of course, there are also drawbacks. The first of these is that we
need to specify a set of auxiliary parameters to fit to, which has a certain ad hoc



quality. Second, the procedure is inefficient relative to maximum likelihood (that
is, it will not generally attain the CR lower bound). Our feeling is that efficiency
is of less importance when we are in a state of ignorance and that it is better to
have an inefficient estimator of a model that fits well rather efficient estimates of
a poorly fitting model.

The estimation method described above is applied to the study of two samples.
The first is a sample of male workers drawn from Danish administrative data from
1981 to 1996. These data have a number of advantages which will be discussed
below, but for now we simply note that although we draw a very homogeneous and
balanced panel of workers, the number of cross-sections unit is large (2119) and the
time series dimension is also relatively long (7+1 = 16). Moreover, these data are
drawn from administrative and tax records and are likely to be less susceptible to
measurement error than survey information. We also present comparison results
on a much less homogeneous sample drawn from the U.S. PSID. This is a sample
of 792 workers observed for 16 years over the period 1968 to 1998.

The main result of the empirical analysis is that even for the very homogenous
Danish sample, there is much more heterogeneity than previous researchers have
allowed for. We also find that we need a different process for the Danish sample
than for the PSID sample. For the Danish sample we found a unit root for
everyone, albeit with very heterogeneous parameters. For the PSID sample, we
need to allow for a mixture of agents with a unit root and some with a stationary
process. We then go on to show that the additional heterogeneity we find has a
substantial impact on outcomes of substantive interest.

In the next section we discuss the formalities of the SMD estimator. In section
3 we discuss the choice of models and which auxiliary parameters to choose for the
SMD estimation step. We also present results from a Monte Carlo study that uses
simulated data that replicates the main features of the data used in the empirical
section. In section 4 we discuss the data we use. In section 5 we present results.
Section 6 presents an analysis of whether allowing for heterogeneity makes much
difference for some selected areas of substantive interest.

2. Simulated minimum distance (SMD).

In this section, we present a simulated minimum distance estimator (SMD) for the
parameters of a model of the individual income process. To motivate the utility
of the method, suppose we have a sample (yi, ..., yi)" where yn = (Yno, Yn1, ---, Ynr)
for (T'+ 1) periods on each of H agents and we specify a model for the individual



income given by a first order Markov process:

{ fo(Yntlyne—1:0)},_1 _gpey. i With Yo given (2.1)

where 0 is a k-vector of parameters in a compact space ©. The model is assumed to
be correctly specified in the sense that there exists a value of the parameters 6 = 6,
such that fo(ynt|yni—1;00) is the true generating process. Given this, we could
apply maximum likelihood (ML) procedures or method of moment (MOM) pro-
cedures to generate an estimator for #y. For example, suppose that the conditional
distribution given in (2.1) implies a set of ¢ (> k) moment conditions on any reali-
sation for one unit, y, which takes the form G (y, ) = 0. For the sample described
above, we take the empirical analogue of this, Gy (§) = H™' 3.7 | G (yn, ) and
define the MOM estimator:

Orron = arg mein |G (0) ] (2:2)
for some distance function ||.||. If ¢ = k then we define the MOM estimator
implicitly by Gy (9 monm ) = 0. Sometimes the evaluation of G (0) is very onerous

and we must have recourse to methods that rely on simulation. In this case
we replace G () by an unbiased simulator Gy (6), where the simulator is for
the model given in (2.1). This gives the Method of Simulated Moments (MSM)
estimator: R 3

QJWSZVI = arg Hbin ||GH (0) || (23)

See Pakes and Pollard (1989) and McFadden (1989) for the original analyses and
Stern (1997) for a survey of the subsequent literature.

The MOM and MSM methods rely on being able specify f;(.) and to derive
implied moments G (.). Sometimes this is very difficult or the resulting moment
conditions are intractable. In this case, it may be possible to replace the true
model with an auxiliary model that is ‘close’ to the true model and to work
with that. This is the motivation for the closely related analyses of Lee and
Ingram (1991), Duffie and Singleton (1993), Gallant and Tauchen (1996) (GT),
Gourieroux, Monfort and Renault (1993) (GMR) and Hall and Rust (1999) (HR).
These papers all present variants of what HR term Simulated Minimum Distance
(SMD). Formally, MSM is also within the class of SMD estimators since we can
always take the ‘true’ model as the auxiliary model. To elucidate how SMD
generalises MSM, we give two leading examples.? Consider first a time series model

3These examples are illustrative only. For both of them we would usually use maximum
likelihood or GMM.



in which we wish to estimate the parameters of an M A(1) process. MSM takes
the M A(1) and finds associated moment conditions and then uses a simulator for
these moment conditions. In contrast, an SMD estimator would take an auxiliary
model such as an AR (2) process and then match estimates of this model from the
data and from a simulator generated under the M A(1) assumption. As a second
example, consider a multinomial Probit model. In this case maximum likelihood
requires the evaluation of a high dimensional integral and we need to fall back
on simulation. This requires an unbiased simulator for the choice probabilities
under the Normal assumption. Given such a simulator, we would construct an
MSM estimator based on the moments implied by the multinomial model (see, for
example, Stern (1997), equation (2.27)). An alternative SMD estimator could be
based on, for example, linear probability (OLS) estimates for each choice (except
the last one). Thus we would estimate the parameters of these equations for the
data and then choose model parameters to give the same parameters when we
estimate on simulated data*, where the simulations are based on the multinomial
Probit model.

In our empirical work we also use SMD but our motivation for using it is
somewhat different from the papers mentioned above. We start from the position
in which we have almost no idea of the form of the true generating process.
For example, even if we assume that everyone has the same finite parameter
process we might allow that the parameters of this process vary across workers.
The question that then arises is how we should allow for (possibly correlated)
heterogeneity; the possibilities are literally without limit and the current literature
gives almost no guide since it allows so little heterogeneity. Given this we have to
conduct an exploratory analysis which involves formulating and estimating a series
of increasingly general models until we find a satisfactory model. These models
often involve integration across the multiple dimensions of the heterogeneity. In
this case, it is prohibitively time and energy consuming to generate a series of
ML models only to discard them almost immediately when they fail to ‘fit’ the
data. Equally, we shall treat concerns regarding efficiency as being of second
order importance in the exploratory phase, relative to fitting well many different
aspects of the data. We suggest using a more efficient estimation procedure once a
preferred model has been found. We now describe the main steps in the estimation
method.

4We require equality since we have as many estimated parameters as model parameters (that
is, ¢ = k).



2.1. Sample auxiliary parameters.

The first step in the SMD procedure is to specify a set of ¢ sample auxiliary para-
meters (to use the terminology of GMR). These are simply statistics of the data,
denoted by the g-vector ¥ (yi, ..., yg) . For the GMR Indirect Inference procedure
the auxiliary parameters are maximisers of a given data dependent criterion which
constitutes an approximation to the true DGP. In the GT approach the auxiliary
parameters are data dependent functions that maximise a ‘score generator’ (quasi-
likelihood function) which nests the true model. This typically involves taking a
flexible (instrumental) model with a large number of parameters that provides a
good approximation to any distribution thought possible (this is captured in an
embedding assumption discussed below). In HR the auxiliary parameters are sim-
ply ‘well-chosen’ statistics of the data; this is the broad approach we adopt.” The
central idea for SMD, as emphasised by HR, is very close to calibration. Given the
model and choice of parameters we can generate model auxiliary parameters. We
then choose the parameters of the model to give a best fit to the sample auxiliary
parameters. The important conceptual point is that even if the probability limits
of the auxiliary parameters under the true DGP are unknown, it is still possible
to estimate the parameters of the true model under a set of assumptions. In the
following we will state the assumptions needed.

In our panel data application the auxiliary parameters take a ‘fixed 1" cross-
section mean form:

3 m) = 3 D o), 2.4

where m(.) is a vector valued function of the 7'+ 1 time series realisations for a
given agent y,. The first assumption concerns independence across cross-section
units.’

Assumption Al

The vectors of observations yy are independent across cross-section units

Moreover we also assume that the auxiliary parameters have an expectation
and a covariance matrix under the true distribution.

Assumption A2

The auxiliary parameters, 7, have expectations and a covariance matrix under
the true distribution defined by:

5To reconcile this with the GMR approach take the data dependent criterion function to be
Qur = —(¥— 1) (¥ — 7) and maximise this with respect to 7.
5In the empirical application we will relax this assumption and allow for time effects.
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70(90) = Eo(ﬁ(yla--;yﬂ)) (2«5)
Vo (6o) = Vare(¥ (y1,-.,ym)) (2.6)

where Ey and Varg denote the expectation and the covariance matrix with respect
to the true distribution fo(;6p).

We term ~y, (6y) the population auziliary parameter. Note that assumptions
A1 and A2 imply that:

p i § (g1, -, yir) = 70 (6o) (2.7)
so that 4 (y1, ..., yx) is a consistent estimator for ~y, (6).

2.2. Simulated auxiliary parameters.

The second step of the estimation method is to simulate from the model { fo(yn¢|yni—1;60)}
with a given set of parameters 6 and on the basis of the simulations to calculate
the auxiliary parameters. We assume that the model is so that it can be simu-
lated, conditional on a set of initial values and on a given value of the parameters
0. The simulated paths depend on an (HT x 1) vector of draws from the error
distribution specified by the model. These draws are kept fixed during the es-
timation process to stabilise the iterative estimation procedure and in order to
satisfy the equicontinuity conditions necessary to establish asymptotic normality.
Let (y3,...,y5) be a set of H simulated paths conditional on the starting values
in the observed data (so that y;, = yno for all h and s). Replicating the procedure
S times, we define the simulated auziliary parameters by:

S
,YSH (0§y10;- 7yH0 = Z?y y17' JyH (28)

The notation emphasises that these values depend the initial values in the data
but we shall usually simply write 757 (). We make the following assumptions on
the simulated auxiliary parameters:

Assumption A3

v (0) is a continuous function of 0
v () is differentiable at Oywith a derivative matriz of full rank

11



We also assume that the model is chosen so that the simulated values converge
uniformly (as H becomes large) in 6 to a deterministic function y*° () that we
term predicted auxiliary parameters:

Assumption A4

pl}im V() =~ (0) , uniformly in 6
Finally, the limit function v*° (#) verifies the following assumption:
Assumption A5

¥ () is one to one and <7 v (0) is of full-column rank

The last assumption we need is to establish a link between that the population
auxiliary parameter and the predicted auxiliary parameter.

Assumption AG6:

The model is correctly specified the sense that there exist a 6y such that the
simulated paths, y*(0y), have same distributions as the observed data y.

Assumption A6 is similar to assumption 4 in HR and assumption A5 in GMR.
Assumption A6 implies that

Yo(lo) = > (o)
Vo(0o) = Vare(m(yy))-

If first expression is violated we will say that the model is misspecified. No-
tice that the concept misspecified is defined relative to the choice of auxiliary
parameters.

A weaker condition than Assumption 6 allows for an approximate model. In
this case the value 6y minimises the distance between the simulated and the true
generating process’:

0o = argmin [|y57 (6) —p Lm 5 (y1, ... ym) | (2.9)

This approach has the advantage that under weak assumptions a true value
for the model parameters always exists. We prefer not to go this far since the use
of approximate models in the final use for the model (for example, calibrating a
GE model) is problematic. Additionally inference with approximate models is not
completely clear-cut.

"This is equivalent to what is proposed in Hall and Rust (1999), equation (95).

12



2.3. The estimator.

The third step in the estimation procedure is to define the estimator on the basis
sample auxiliary parameter and the simulated auxiliary parameters. The central
point of SMD is that we can replace the (unobserved) population auxiliary pa-
rameters and the (analytical intractable) predicted auxiliary parameters with the
sample and simulated auxiliary parameters, respectively, and thereby obtain a
consistent estimator for 6y. To do this, we first specify a g x ¢ data dependent,
symmetric and positive definite matrix Ay with the property that plim Ay = A,
a non-stochastic positive definite matrix. We define the simulated minimum dis-
tance (SMD) estimator by:

Osup = arg min (Y (0) =4 (Y1, - ym)) A (V77 (0) — 4 (1, -rym))  (2.10)

Given continuity of v* (§) and compactness of ©, the SMD estimator always

~

exists. The estimate is locally unique if Vg7 (95MD>has full rank. In general

the value and finite sample properties of Osprp will depend on the choice of the
weighting matrix.

Below we choose to work always with the just identified case for which we
have as many parameters in our model as auxiliary parameters (k = ¢). Then the
choice of weighting matrix is irrelevant and we set:

S (éSJMD> =5 (Y1, Yn) (2.11)

If there is no solution for this equation then we say that the model is misspecified
(relative to the choice of auxiliary parameters).®

2.4. Inference.

We now establish the asymptotic properties of the SMD estimator defined in
(11) under assumptions A1-A6. With respect to the role of our assumptions,
note that the assumptions A3-A/ are standard in order to establish consistency
of the estimator. Pakes and Pollard established consistency of its simulation
estimator in a more general context without assuming continuity in the criterion

8The same can be found when estimating non-linear models using moment conditions.
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function”. The uniform convergence assumption A4 is in the line of condition

(iii) of Theorem 3.1 in Pakes and Pollard or assumption 6 in HR. As we have seen
above, assumption A5 is identification condition for #y and it is similar in essence
to assumption A4 in GMR or assumption 5 in HR.

In practice, in our empirical work, we only need the distribution of the differ-
ence (Y97 (0) —F(y1, ..., yn)) for inference, but we shall also provided the distrib-

ution of the estimator 0g,,p to conform with standard presentations. To establish
consistency, note that given assumptions A1-A6 plimyg ... 0syp = 0o. To see
this, note that given assumptions A1-A6 , the criterion in (2.10) converges in
probability uniformly to a limit function:

(7°°(0) = 70(00))" Ase (Y (6) = 7(60)) , (2.12)

and the limit function in this expression attains a unique global minimum at
0 = 0y, from which consistency follows.'"
To derive the variance of

(Y (O) =4 (v, ym))

we use the following decomposition:

YHO) =5 = (v (0) =7 (0) + (1) = %0) + (v — )
If the model is correctly specified (assumption 6) the middle term disappears when
evaluating at § = 0, we can write:

VH (v (80) = 4) = VH (v (60) — 7 (60)) + VH (7o — ) (2.13)

For the first term on the right hand side we have (using the definition given in
(2.8)):
1 = S S (o 0]
VA (0 60) = (00) = VI (GO0 i) =7 60))
1
— VI (Gt~ @) (219

“Notice that our SMD estimator may be defined in terms of their formulation (see example
4.1 in Pakes and Pollard) as the estimator which minimizes the random function:

1Ga (6) 1] = 1A} (31 (0) =)

10Consistency may be also obtained by application of Theorem 3.1 in Pakes and Pollard. It
can be shown that assumptions A7-A5 imply the necessary conditions for consistency in the
theorem.
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which is a sum of random variables which are independent across simulations and
across cross section units. By the CLT, for fixed S we have:

VE (0 60) =77 (80) N (0.5 ) (2.15)

If we allow the number of replications to become large then the simulated auxiliary
parameters converge to the (non-stochastic) predicted auxiliary parameters. For
the second term, we have, by standard CLT derivations, that:

VH (75— 4) 5 N(0,Vp) (2.16)

Since the simulations and the data follow the same process and they are indepen-
dent this gives:

S+1
VH (5 (6) —4) 5 N (0, ; Vo> (2.17)
Thus the variance for estimation with only one replication of the model (S = 1) is
twice that of estimation that uses the analytical solution 7> (6y). A test for the
over-identifying restrictions implied by the model is based on the statistic:

GF = SH_i (v (Bsaen) =4 (g1, o)) T
(’YSH (/Q\SMD> =¥ (Y1, s yH)> ; (2.18)

where GF is asymptotically distributed as a x? distribution with ¢ — k degrees of
freedom when the model is well specified and the embedding assumption holds.

2.5. The asymptotic distribution of SMD estimator

We now turn to consider the asymptotic distribution of ESMD. From the first
order condition and a Taylor expansion of ”yij <ég M D> about # = 6, we can show
that:

VH (éSMD - 00> 4N lo, %GlngGlll : (2.19)

where

G = (p Jim [V (80)]) Aw(p Jim [V75 (6)

H—oo

Gy = (p Jim [V7°" (00)]) AscVoAuolp Jim (V25" (6)])  (2:20)

H—oo
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Therefore, the optimal weight matrix is given by Ay = V5 *. In this case, the as-
ymptotic variance of the optimal SMD estimator which uses a consistent estimator
of V5! as weight matrix is (S—ng) G, where

G = (p Jim [V257 (005 *(p Jim (V237 (00)). (2.21)

As we stated above, we do not use this for inference, but rather changes in the
value the over-identifying restriction value.

2.6. Choosing the number of auxiliary parameters.

The number of potential auxiliary parameters, ¢, usually exceeds the number of
model parameters, k. This suggests two alternative estimation strategies. One
is to use all the auxiliary parameters in fitting and to use (2.18) to test for the
validity of the over-identifying restrictions. An alternative is the just identified
(JI) procedure in which we choose k of the auxiliary parameters and fit on these.
Then we can use the ¢ — k auxiliary parameters not used in fitting to generate
goodness of fit test statistics similar to equation (2.18). The expression for the
goodness of fit test is given by (2.18) replacing ¥ (1, ..., yu) with the vector of

statistics not used in fitting and ’yﬁf{ (55 M D> by the vector of simulated statistics

using the estimated parameter values from the JI procedure.

There are a number of advantages to the JI procedure. The first is that the JI
procedure focuses on the chosen statistics and allows us to examine directly how
well we fit the other statistics. As we shall see, this usually gives clear indications
of how to generalise the model. A second and important practical advantage of
the JI procedure is that we can be sure that the iterative estimation procedure has
converged since then the criterion should be zero if the model is correctly specified.
As we shall see below, all but the simplest models have many local minima and it
is a major practical matter to be able to ensure that we have a global minimum
for the criterion. A third advantage of the JI procedure is that the parameter
estimates are independent of the chosen weighting matrix (but note that the use
of the JI procedure is simply a choice of weighting matrix for all the statistics
that gives zero weight to some of them). The disadvantages of the JI procedure
are that the parameter estimates are, of course, sensitive to which statistics we
choose to fit to. We present some Monte Carlo evidence on the two approaches
below; this investigation suggests strongly that the JI procedure also has other
advantages.
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3. An earnings process.

3.1. The model of earnings.

We shall follow previous investigators and adopt a two step procedure (see Ap-
pendix A). First we ‘control’ for age, experience, education and macro effects by
selecting the sample on education and being in a particular year of birth group and
then by regressing log earnings on age and experience variables and time dummies
(details are given below). In the second step we model the residuals as a univari-
ate process. Although this two step procedure is not necessarily coherent with
general heterogeneity schemes we adopt it to minimise the differences between
this study and previous studies so as to concentrate on the effect of allowing for
unobservable heterogeneity. In the second stage we model the residuals from the
first round regression as an ARMA(1,1):

Yt = O + BpYhi 1+ Ent + Onens 1, Ent ~ 1id(0,0%) (3.1)

where, to save, notation, y; denotes the residual for agent h in period ¢ (which
we shall refer to as earnings below).!! Note that we do not restrict any of the
parameters to be the same for different individuals. In particular, we do not
restrict (3, so that some agents could have a unit root (or even an explosive
process) and others a stationary process.

In our empirical work we shall consider three classes of models. First we
restrict attention to models in which everyone has a unit root. We begin with the
simplest such model:

Ayht =€p + 0€h¢_1, Ent ~ Zld(o, 0'2) (32)

in which everyone has the same (driftless) process with the same M A(1) parameter
and error variance. We then consider a sequence of increasingly general unit
root models that culminate in a model that allows for considerable correlated
heterogeneity in the parameters of individual processes. As we shall see this most
general unit root model fails to fit the data in significant directions. We then
consider a series of stationary models, beginning with the simplest in which we
have:
Ynt = O+ BYni 1+ Ene + Oens 1, en ~ 14d(0,07) (3.3)
1Some investigators use a model which has an MA(2) structure for first differences so that
these models are not captured by our general model. In practice, we found no evidence of

significant second order auto-correlation in our sample (see the dsicussion of the data below) so
we simply consider only the first order scheme.
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and the individual intercepts are a parametric random function of the initial val-
ues. Once again we consider a series of increasingly general models all of which
maintain that the auto-regressive parameter (3 is the same for everyone and once
again we conclude that we cannot fit the data with this class of model. Finally
we consider models that allow for heterogeneity in the auto-regressive parameter
with the possibility that a proper subset of agents have a unit root.

3.2. Which statistics to fit?

Below we shall present and fit 22 statistics derived from a panel of univariate
earnings processes. The choice of statistics we consider is motivated by three
(closely related) considerations. First, we wish to make sure that the final model
we end up with can account for all the results currently in the literature. Since
different investigators fit to different statistics, this requires considering a wide
number of (correlated) statistics. For example, MaCurdy (1982) and Abowd and
Card (1989) model the auto-covariance structure of first differences of log earnings
whereas Geweke and Keane (1997) (and others) base their analyses on mobility
measures such as short run and long run transition matrices between different
quintiles of the earnings distribution. Clearly these two sets of measures are
closely related but there is no hope of finding a general analytical relationship
that would allow us to fit to one set and then derive the implications for the
other. Thus we use both sets of statistics.

A second motivation for some of the statistics we consider is that they can be
readily related (informally) to the parameters of our models; that is they have an
informal structural interpretation. Specifically, we run a simple OLS regression
of current (log) earnings on lagged earnings for each agent (for the 16 years we
observe each). We record the parameter estimates of the intercept and slope, the
residual variance and the first order auto-correlation of the OLS residuals. To
illustrate out motivation, consider the OLS slope parameter. This is certainly not
an unbiased estimator of the ‘true’ slope parameter (see Kendall (1954)) but it
is closely related to it. As we shall see, having a close link between some of the
statistics and the parameters is useful in many ways. More complicated procedures
which include small sample corrections which give a closer correspondence to
parameters could be implemented but these are contentious and not widely used.
Finally, the OLS route is transparent and quick (as opposed to, for example,
Kalman filter based ML estimation of an ARMA(1,1) process for each real and
simulated agent); speed is important for a simulation based method such as SMD.
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A third motivation derives from a consideration of the uses for estimates of
earnings processes (see the brief discussion at the start of the paper and section
6). Typically, a different use leads to emphasis on different statistics.

We now present a detailed description of the set of 22 auxiliary parameters
that we use in the SMD estimator. As discussed above, the first set comes from
OLS regressions for each agent. Specifically, we first run an OLS regression of
Yne on a constant and yy; 1 for t = 3,4...,16 (here and below we do not use the
first observation since we use this in the simulations). We then take means and
variances and covariances over the sample of the OLS intercept and slope para-
meters, the log of the residual variance!? and the residual first auto-correlation.
This gives us 14 statistics (four means, four variances and six covariances). The
next statistic captures the change in the dispersion of the distribution of earnings
over time.'* We shall be considering a sample that is very homogeneous in terms
of education, age and marital status so that the interest here lies in the time series
trend in ‘within group’ inequality emphasised by Gottschalk and Moffit (1995).
Specifically, we calculate the cross-section unconditional variance in each year and
then regress these 15 time series statistics (recall again that we do not use the
first period information) on a trend and record the coefficient value on the trend
and the variance of the errors from this regression. As we shall see this trend is
significantly positive. The source of this increase in the unconditional variance
is of of particular interest. If the underlying processes (or some of them) have
a unit root then the cross-section unconditional variance will increase over time
even if we take the individual conditional variances to be constant. It is thus of
considerable interest to test whether the increase in the unconditional variance is
solely to some agents having a unit root or whether we also have some increase
in the conditional variance which is the short earnings risk that agents face. The
second statistic, the variance about the (deterministic) trend will be useful in de-
termining the source of the heterogeneity in the individual variances; specifically
, we can use it to distinguish whether macro shocks have a differential impact on
the income processes.

The next three auxiliary parameters are based on the time series of differenced
data; these statistics are included for comparability with MaCurdy (1982) and
Abowd and Card (1989). We take first differences for each agent and then record

12The log of the variances is taken since this is closer to being Normally distributed than the
variances.

13Recall that in the first round we regress on time dummies so that the mean of the residuals
in each year is zero. Thus we do not have to consider changes in the mean over time.
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the mean across the sample of the variance and the first three auto-correlations
of the first differences. Finally we include three mobility measures. Since the
usual concern is with the duration of low income spells we take the proportions of
those in the bottom quintile in the second year of our data who are in the bottom
quintile in the third year and in the final year and the proportion of agents who
are in the bottom quintile for more than half of the observed periods. Counting
up we see that we have a total of 22 statistics: 14 OLS based statistics, 2 trend
coefficients, 3 means of first differenced statistics and 3 mobility measures. To be
sure there is an element of arbitrariness in this choice but it does have the virtues
of being fast to compute, capturing most of the concerns of previous investigators
and being close to (or perhaps even including) sufficient statistics for likelihood
functions for all of our models.

3.3. Monte Carlo simulations.

To illustrate the use of our estimator and also to resolve some of the outstanding
issues discussed above we present here a simple Monte Carlo study. We first simu-
late some synthetic data using a known process. We then estimate the parameters
of the data many times using the SMD estimator. The variables in the study are
the number of simulations used in the estimation (denoted S above) and whether
to use the JI or the OI option.

We take the simple unit root model with an M A(1) error:

Yit = 0+ Y1+ i + 041 (3.4)

The parameters for the simulation are chosen to be similar to the parameter
estimates from our data (presented below) for this simple model: o =0, § = —0.1
and o. = 0.05. To generate the synthetic data (which we do only once) we use a
sample size the same as in our data ( H = 2119) with the first two initial values
for each simulated household being set equal to those in the data (recall that the
estimation procedure only uses observations 2 to T so that the first observation
for each household is irrelevant).

For each Monte Carlo simulation of the SMD estimation we choose the number
of replications of the data S = 1,2 or 5 and for each simulation we estimate using
both the JI procedure and the OI procedure. For the JI procedure we fit to
the mean of the OLS intercepts, the variance of the OLS residuals and the first
order auto-correlations. Table 1 presents the results. We present statistics for the
three parameter estimates and for the y? goodness of fit test for the JI procedure
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and the y? over-identification test statistics for the OI case. Since the two test
statistics have degrees of freedom equal to 19 for the JI and OI cases, we would
expect that the means and variances are centred on 19 and 38.

The principal features of the Monte Carlo results are:

1.

All estimators look unbiased (the mean parameter estimates are very close
to true values).

The OI estimator sometimes converges to the ‘wrong’ parameter estimates
(it finds a local minimum rather than a global one). This results in high
standard deviations for the parameter estimates (relative to the JI standard
deviations) and very high values for the x* test parameter. As can be seen,
the means and variances for the latter are very high whereas the medians
look reasonable.

The JI parameter estimates are relatively precise (recall that all the values
are multiplied by 100) with the higher S estimates having less dispersion,
almost exactly as predicted by the theory.

The means for the x* (19) goodness of fit statistics for the JI estimates are
a little low, so that we would tend to under-reject relative to the nominal
size but the bias is not dramatic.

The JI, S =1 x?(19) estimates are better than for the higher S cases, in the
sense that the mean and variance are closer to their theoretical counterparts.

The lessons we draw from these simulations are: the SMD model does a good
job of estimating the parameters of a simple model; the OI procedure is unstable
and sometimes converges to a local minimum; using one simulation of the data
(S = 1) is better than using more simulations both because it is faster and also
because it yields better test statistics in our simulations. In our empirical work
below we consequently use the JI procedure with S set equal to unity.

4. The data.

The Danish earnings data come from the administrative data collected and col-
lated by Statistics Denmark. This is based on information collected by a number
of different administrative authorities. From the central register containing infor-
mation on the entire population in Denmark over a 16 year period, a ten per cent
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sample is drawn. The most notable features of the Danish data are: a large and
representative sample; no attrition (except for natural attrition due to death or
immigration); low measurement error; real measures of experience (not age minus
schooling) and the possibility to observe many other correlates (for example, res-
idential and marital status, labor force status, health etc.) although only limited
number of these used here.

The data cover the period 1981-1996 and contain annual information. We
select a sample of male skilled blue collar workers who are some time from their
training period. Specifically: men aged between 30 and 39 in 1981 and who have
basic schooling (to age 16) and formal vocational training (for example, plumbers
and electricians). To avoid problems with unemployment (which requires a sepa-
rate study of its own), we condition on being continuously employed in a full-time
job (with no self-employment) for the whole period. We select men who were con-
tinuously married or cohabiting with the same spouse in all 16 years. Finally we
have eliminated individuals with an unreasonably low income in any year (individ-
uals with an annual income below 30,000 Danish Crowns in 1980). After all these
selection criteria, we end up with a balanced panel of 2119 workers. Compared to
the earlier studies of income dynamics this is a very homogeneous sample. The
motivation for taking such a homogeneous sample is that if we find significant
heterogeneity for this group then a fortior: it is likely for more heterogeneous
groups considered in literature.

In the all following analyses we are using annual labour gross income deflated
by the consumer price index. The earnings variable is constructed from the tax
register and are therefore believed to be very reliable. To be consistent with most
previous studies we first regress log earnings on year dummies and a set of time
invariant covariates (year of birth and experience) and work with residuals from
these regressions. We present a fuller description of the data and some summary
statistics in Appendix D. In figure 4.1 we present five earnings paths (strictly,
residuals) drawn at random from our sample. As can seen, the levels and the
paths differ quite radically across individuals. Figures such as these (and those
presented in Chamberlain and Hirano (1997)) underpin our feeling that we need
more heterogeneity than is conventionally allowed for in previous studies.

The sample auxiliary parameters are presented in Column 1 of Table 2 (with
bootstrap based standard errors below). The OLS statistics are given in rows 1
to 14. The mean of the OLS intercept is close to zero (0.005) with a value for
the standard deviation equal to 0.128. The mean of the OLS autocorrelation. is
also close to zero and negative (—0.0179) with a standard deviation of 0.213. On
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Figure 4.1: Five earnings paths.
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the other hand, the distribution of the OLS slope parameter has a mean value of
0.6 with a standard deviation of 0.307. With respect to the covariances among
the OLS parameters, we observe that there is a positive covariance between the
intercept and the OLS log variance and negative covariances between the OLS
slope and the OLS log variance and between the OLS intercept and the OLS
slope.

To capture changes in the distribution of earnings over time we calculate the
trend in variances and the variance about this trend, see rows 15 and 16. The
variance of the first period levels of logs is 0.048 so that the trend coefficient of
0.003 represents a doubling in the variance over the 16 years of our data which is
a pronounced increase in dispersion over time.!* This is qualitatively similar to
the result of Gottschalk and Moffit (1994) who also find an increase in the within
group variance over time. It is also consistent with the very widespread finding
that the inequality of earnings has been increasing through our sample period
(see, for example, Buchinsky and Hunt (1997)) but note that is for the population
as a whole and not following the same group through time. The finding that the
variance is increasing over time is not necessarily evidence that uncertainty or
‘risk’ is increasing: it may simply reflect the fact that some or all of the agents
have a unit root with a consequent ‘fanning out’ of variance over time. It is an
important goal of our research to see whether we can determine what is generating
this increase in dispersion.

For the three statistics derived from first differences (rows 17-19) we see that
the variance is 0.07 which represents quite a high variance for growth. The
first two auto-correlations are -0.19 and -0.02 respectively which suggests that
at most we have an MA(1) process in first differences. These statistics are quali-
tatively similar to Abowd and Card (1989) (see, for example, their PSID sample
of males from 1969-1979 with the SEO sub-sample excluded, see their Table V)
except that they have somewhat more second order auto-correlation. The ranges
(over years) of the Abowd and Card statistics are: var(Alny) € [0.09,0.20],
autol(Alny) € [—0.54,—0.10] and auto2(Alny) € [-0.15,—0.005]. Thus our
data shows a good deal less variance in growth, which may be partly attributable
to the smaller measurement error we have and also to the fact that we draw a
much more homogeneous sample.

The final three rows (20-22) give statistics on the incidence of low earnings.
We can see that while 87.3% of workers in the bottom quintile in the second period

14The change in the variance is not monotonic but is highly correlated with the business cycle;
although this is an important issue, we leave this aspect for future research.
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are also in there in the third period, this percentage decreases to a 59% when we
consider the final period. Finally, the incidence of situations of ‘permanent’ low
earnings as measured by the percentage of workers in the bottom quintile for at
least 8 of 15 years is approximately 20%.

5. Results.

5.1. Unit root models

The first model we consider (model 1) is extremely parsimonious and is used
mainly to set the agenda. We assume that everyone has a unit root and that
first differences of log earnings follow a driftless M A(1) process with Normally
distributed errors with the same parameters for everyone; see Table 3 for an exact
statement of this and other forms we consider, as well as the choice of ap’s and
the parameter estimates for all the models we consider. We do not include a drift
term (a constant) since the data are residuals from a regression on year dummies
(amongst other things) and so the mean in each year is zero. This model could
readily be estimated using a variety of conventional GMM, minimum distance
or maximum likelihood techniques but we choose to use SMD for comparability
with later, more complicated models. As discussed above, we shall use the JI
procedure so we need to choose two of our auxiliary parameters for fitting. Since
the parameters of the model are the variance and the M A(1) parameter, we fit
this model to the OLS analogues: the OLS mean log variance and first order auto-
correlation. For this model only we also consider an alternative choice of ap’s, so
we designate the estimates model 1a.

Not surprisingly this very restricted model fails to fit the other auxiliary pa-
rameters in a number of dimensions. Referring to Table 2, column 2 we see first
that the goodness of fit for model 1a rejects decisively (a x? (20) statistic of 856).
In figure 5.1 we present the distributions for the four OLS estimates for the data
and for the simulated model. As can be seen, the model fits three of the distri-
butions surprisingly well for such a simple specification. Note, however, that we
use the same initial values in our simulations as in the data so that the good fit
for the OLS intercept is to be expected. As can be seen, the model dramatically
underestimates the (log of the) variance of the OLS errors. Referring to Table 3,
we see that for the individual ap’s the most important failures (in order of the
listing in Table 3) are:

1. we overestimate the mean OLS slope parameter (m(sl));
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2. we underestimate the variance of the OLS intercepts (v(in));
3. we dramatically underestimate the variance of the error log variance (v(lv));
4. we underestimate the variance of the OLS auto-correlations ((v(au)).

5. there is a significant positive correlation between the OLS intercept and
variance in the data (c(in, lv)) and a negative one in the simulated data;

6. we underestimate the trend in the cross-section variance (vtrend) and the
variance about this trend (vtrsd);

7. we underestimate the variance in first differences ((var, D));

8. the first order auto-correlation for the first differences ((aci, D)) is smaller,
is absolute value, for the simulated data than for the sample;

9. we underestimate the persistence of the low income state ((p(2,3) and p(half)).

The first issue we address is whether it might not be better to fit on the first
differenced data (as in MaCurdy and Abowd and Card). Thus we also fit model 1
to the first two differences ap’s ((var, D) and (acl, D)) (see model 1b in Table 3).
As we would expect, given the fit of model 1a to ‘D, var’, the estimated M A(1)
parameter is larger (in absolute value) than for model 1a. Apart from the obvious
differences that arise from taking different ap’s to fit, we see that model 1b fits
significantly better for the OLS mean slope, the variance of the OLS intercepts
and the trend of the cross-section variance. It is somewhat worse for the measures
of the persistence of low income states. Overall, Model 1b fits worse in terms
of the goodness of fit test statistic so that we shall continue with fitting to OLS
parameters below. The latter strategy also allows us to choose ap’s that are close
to being ‘structural’. One possible route to reconciling the results for models la
and 1b may be to allow that the error term has a common (‘macro’ element)
and an idiosyncratic component and that the effect of the former differs across
workers. On the other hand, it may be that the difference is due solely to the use
of a very restrictive model, so we postpone further consideration of this feature of
our results until later.

One obvious but important point to emerge from the comparisons of models 1a
and 1b is that fitting to different ap’s may change the fit to ap’s that are not used
in fitting in ways that are very difficult to predict analytically. This justifies the
‘fire-fighting’ approach to the exploratory analysis we adopt in which we address
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the most serious problems first and then see how the fix affects the fit to other
ap’s.

The most serious misfit (in terms of the t-value) of models la and 1b is to the
dramatic under-prediction of the dispersion of the error log variance. This has
been observed by other authors (Geweke and Keane (1997), Chamberlain and Hi-
rano (1997) and Ulrick (2000)) and has been addressed in one of two ways. Either
investigators take a different (fat tailed) distribution which is assumed common
to everyone or they allow that agents have Normal errors with heterogenous vari-
ances. In model 2 we allow for the former by modelling the error variance as a
mixture of zero mean Normals with a given mixing probability of 0.8.1°. Specifi-
cally we assume that in any year and for any worker the standard deviation can
be one of two values'® (see Table 2). We fit this three parameter model to the
same ap’s as for model la and to the variance of the OLS log variances (‘v(lv)’).
One feature of the estimates of model 2 is that the MA(1) parameter is much
closer to zero than for the normal model; this is consistent with the view that
an incorrect model may lead to spurious dynamics. Note as well that the mean
standard deviation (0.042) is a little less than the value for model la. Referring
to Table 3 we see the overall goodness of fit test has improved considerably but
it still rejects decisively. This reflects that some fits have improved (the most
obvious example being the variance of the log variances!) but most have not.

The alternative to allowing for a common fat tailed distribution is to assume
that all agents have Normally distributed errors but with persistently different
variances. Dominitz and Manski (1997) present direct evidence that there is a
good deal of heterogeneity in subjective perceptions of short run household income
risk. Model 3 captures this by assuming that the individual specific variances are
constant over time and are distributed according to a particular distribution.
We tried one parameter families such as the exponential (as in Chamberlain and
Hirano (1997)) and the two parameter Beta, but these failed to fit the data in the
sense that we could not find parameter values that drove the criterion to zero. We
ended up using a two parameter lognormal distribution.!” Specifically, we first
draw a value for the variance of the error distribution for each simulated agent

15We could also have estimated the mixing parameter but there is no ‘natural’ auxiliary
parameter to identify it. Put another way, a three parameter model for the variances is over-
parameterised relative to our choice of auxiliary parameters.

16Recall that our sample excludes any worker who has any unemployment in the 16 years of
the sample so this does not reflect intermittent large shocks due to unemployment.

17This distribution also has the important advantage that we can allow for correlated hetero-
geneity (see later models) in a simple way.
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from a log Normal distribution with given mean and standard deviation (denoted
by n, and 7, respectively) and then keep this fixed over time for the simulated
agent. Referring to the estimates for model 3 in Table 2 we note that the estimated
mean variance is a little above that for the homogeneous model (model 1a) and the
M A(1) parameter is broadly similar. The variance of the lognormal distribution
is highly significant in the sense that the goodness of fit statistic falls from 856 for
the model with 7, = 0 (that is, model 1a) to 410. We shall not discuss the fits for
this model in detail but we do note that although the correlation between the OLS
slope and log variances is much reduced, it is still of the ‘wrong’ sign. Figure 5.2
presents the distributions of the OLS error variances for the data and for models
2 and 3; it will be seen that model 3 seems to better capture all of the features
of the data distribution. Given this and the fact that the heterogeneous variances
model also fits rather better the other ap’s than the fat-tailed alternative (if the
difference between x?(19) values of 489 and 410 means anything) and since we
have a pre-disposition toward modelling persistent heterogeneity, we shall only
pursue the persistent heterogeneity model in the subsequent analysis.

The next model addresses explicitly that no model yet considered captures the
correlations between the OLS error variances and the OLS intercepts and slopes.
Thus we consider model 4 which allows for correlated heterogeneity. To do this,
the only correlation between model parameters and data that we can allow for in
our models is with the initial values (see the discussion in section 1). Specifically,
we take model 3 and allow that the mean of the lognormal distribution for the
variances is a deterministic function of the initial values (see Table 3 for details).
Thus we have four parameters (0, n;, 7, and \) with model 3 if A = 0 and model
1if A =n, = 0. Given the way we model the correlated heterogeneity the obvious
additional auxiliary parameter to take to fit this model is the correlation between
the OLS intercepts and log variances. Table 2 presents the results; the reduction
is the goodness of fit parameter suggests that this new parameter is highly signifi-
cant. The new model now fits reasonably well on a number of dimensions but still
does not capture the variation in the OLS intercept and autoregressive parameter.
To accommodate these, models 5 and 6 add (uncorrelated) heterogeneity in the
drift terms and the M A(1) parameter. Adding the latter achieves a considerable
improvement in many dimensions. For example, model 6 captures much of the
negative correlation between the OLS slope and variance parameters even though
we do not model this explicitly nor use it in the fitting.

One concern that we have is how much bias is introduced by using just iden-
tified models rather than fitting to all the ap’s simultaneously. To investigate
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this, we also estimate model 6 using all 22 ap’s. As we have emphasised above,
we prefer the JI procedure since then we can be sure of convergence. For the
OI estimation we use the JI estimates as starting values; we could not find other
starting values that gave a lower criterion but this does not guarantee that we have
reached a global minimum. The x? (16) statistic for the OI estimation procedure
is 58.4. This is, of course, necessarily lower than the goodness of fit statistic of
60.5 for the JI estimates, but not much so. Consistent with this, the parameter
estimates are very close to those for the JI estimates. We conclude that it does
not make much difference whether we use the JI or the OI procedure for the
final model. This does not rule out that using the OI procedure throughout our
exploratory analysis might not lead us to a different preferred model.

Model 6 is the most general ‘pure’ unit root model we shall present. The
goodness of fit statistic is still poor by conventional standards (a x? (16) of 60.5)
but it is a considerable improvement on more restricted models. To reinforce this,
in Table 4 we present formal tests for some restrictions on model 6. To do this
we take the six ap’s used to fit model 6 and in turn set each of four of the model
parameters to zero using the same ap’s to fit. This gives a x? (1) test statistic for
each restriction. As can seen, all of the simpler variants of model 6 are decisively
rejected against the more general model. In particular, the evidence is very strong
for there being correlated heterogeneity between the initial value and the variance
of the error terms; we shall return to the implications of this below.

| Table 4. Tests for the unit root model |

Parameter
Restriction restriction | x* (1)
Zero mean, heterogeneous MA(1) parameter | 6; =0 26.0
Homogeneous MA(1) parameter 0y =0 15.1
Uncorrelated heterogeneity in variance A=0 145
No drift for anyone. =0 24.5

The most general unit root model that we choose to fit (model 6) fits most of
the features of the data quite well. In particular, the mean and the variance of the
OLS slope parameters are well approximated even though the model imposes that
everyone has a unit root. On the other hand, the fit for some of the other ap’s is
not so good. For example, we overestimate the trend in the variance (‘vtrend’) and
underestimate the long run persistence of being in the lowest quintile (‘p(2,16)’).
As regards the former, the time path of the cross-section variance for the data is
not linear, as we would expect from a model in which everyone has a unit root,
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but rather concave which suggests that some agents have a stationary process.
Thus it seems worth exploring how well stationary models can fit the data.

5.2. Stationary models.

The first stationary model we consider (model 7) is an ARMA(1,1) with the
same AR parameter for everyone; that is, model 6 with a non-unit autoregressive
parameter (see Table 3 for an exact statement).'® Notice that the intercept is a
linear function of the initial condition (with a coefficient restricted to be equal to
(1 — 3)) plus a random error. The new auxiliary parameter used to fit 3 is the
mean of the OLS slope. The estimated AR parameter is 0.89 and estimates for
the other parameters are similar to that obtained for model 6. One noteworthy
feature of model 7 is that it fits the negative correlation between the OLS slope
and variance parameters very well (see Table 5) even though no explicit allowance
is made for such a correlation. Given these estimates we can test between everyone
having a unit root and everyone having a stationary process with the same AR
parameter. Our SMD procedure gives two alternative tests for this.! The first
SMD based test is a Wald test based on the t-value for the difference between
the data and simulated mean OLS slope parameter, ‘m(sl)’, for the restricted
model, 6; this is 1.63. An alternative test - which corresponds to a likelihood
ratio test - follows the same procedure as for the tests of restricted versions of
model 6. That is, we estimate our preferred unit root model (model 6) with
the extra ap used in model 7 with 3 restricted to be equal to unity. The x? (1)
statistic for the goodness of fit is 0.66. Thus both tests suggest that the pure unit
root model would not be rejected against a stationary model with a homogeneous
AR parameter. However, the underestimate for the variance of the OLS slope
parameters in model 7 (a predicted value of 7.95 as against 9.44 for the data, with
a t-value of —2.32) suggests that it may be worth investigating whether we should
allow for a heterogeneous AR parameter. For the moment we shall maintain
stationarity for everyone with a positive AR parameter, so that the values are
constrained to lie within the open interval (0, 1); estimates with a support of

18We of course also tried the simpler stationary models corresponding to models 1 to 5; they
all fit much worse than our starting point here and are not reported for the sake of expositional
parsimony.

9Tn future work we shall investigate the properties of these procedures against more conven-
tional tests for ‘fixed 77 contexts, such as those proposed in Harris and Tzavalis (1999). Other
tests we would like to consider are likelihood ratio tests of models 6 and 7 such as those proposed
by Vuong (1989).
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(—1,1) gave very similar results to those reported here. To do this, in model 8 we
model the AR parameters as being distributed as a logisitic distribution (see Table
3 for details). The parameters reported in Table 3 imply that the distribution
of AR parameters is highly skewed; the mean and median are 0.92 and 0.95
respectively with a first percentile and first decile of 0.61 and 0.82 respectively.
The x? (2) statistic for the test of the heterogeneous stationary model against a
pure unit root model is 2.18. Consequently we conclude that the unit root model
is to be (statistically) preferred to the heterogeneous stationary model. On the
other hand, the parameter values of the latter and the pile-up of the distribution
close to unity (see figure 5.1, panel B) suggest that a mixture model in which
some agents have a unit root and others a stationary process might do better
than either of the ‘pure’ models; it is to this that we now turn.

5.3. Mixed models.

The mixture model we consider is a mixture of the unit root model 6:

Ayne = ap+ep +0nenia,
with o~ N (0, ai) ,
ent N (07 O'i) ) O'i~lN(€.I'p()\uyh1) * 771117 7715)
and 0, N (607, 05) (5.1)

and the homogeneous stationary model 7:

Ynt = Qn+ BYnt + Ent + Oneni—1,
ap = (1—=08)yn +vn, v N (0, 012)) ,
en N (0,07) , o7 "IN (exp(XNyn1) * 15, 13)
and 0, N (67, 65) (5.2)

with a mixing parameter of 7 for the probability of being a stationary model.

Models 6 and 7 have 13 parameters between them. We do not have enough ap’s
to estimate these and the mixing parameter for the wholly unrestricted model, so
that we need to impose some restrictions on the variation of parameters across
the two models. To choose these restrictions, we first compare the parameter
estimates for the pure models given in Table 3; for convenience, the comparisons
are given in Table 6.
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| Table 6: comparison of parameter estimates.

| Model 6 (unit root) | Model 7 (stationary) |

I} 1 0.89
ey Ou 0.007 0.022
M 0.059 0.058
s 0.029 0.029
A 1.51 1.45
0, —0.148 —0.116
0 0.283 0.237

As can be seen, the two estimates for the ‘intercept’ parameters (o, and o)
differ radically. This simply reflects the very different role that the intercept plays
in stationary and unit root models. For the former, heterogeneity in the intercept
represents heterogeneity about the theoretically predicted intercept (1 — 3)yn1
whereas for unit root models it represents heterogeneity in growth rates (drifts).
As we would expect there is considerably more variation in the former than in
the latter. On the other hand the other values are all quite similar (the M A
parameter (6; and 6s) estimates are relatively imprecise so that the differences
are not important statistically) so that it seems acceptable to restrict them to be
equal across the two mixtures (n¥ = n3,n% = 05 etc.). This gives 9 parameters:
(Cay Tuy My Moy A, 01,02, B, 7). Even this is too many, so that we impose that there
is no heterogeneity in the drift for the unit root; that is, with o, we set to zero. To
model the mixture we take draws from a unit uniform distribution and assign all
simulated agents with a value above a certain cut-off (7, ‘the probability of being
stationary’) to having a unit root with no drift. Otherwise a simulated agent is
assigned to having a stationary process. As is usual with simulated discrete models
we have to introduce some smoothness in the assignment to make the otpimising
algorithms work; we do this by replacing the 0/1 assignment by a Normal cdf with
a very small variance so that agents who have uniform draws that are distant from
the cut-off point 7 are assigned zero or unity but a small number of agents close
to the cut-off point are assigned a value between zero and unity. In practice,
we can take a ‘tight’ bound and only one percent of our simulated agents have
a probability of being stationary that is between 1% and 99%. The parameter
estimates are given in Table 2 and the fits are given in Table 5. We estimate
that 30% of our agents have a stationary process with an AR parameter of 0.93.
Given these estimates we can also test the two preferred ‘pure’ models, 6 and 7.
The latter is given by restricting 7 to unity; the x* (1) statistic is 0.26 so that we
would certainly not reject the homogeneous stationary model against the mixture
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model. To test for the pure unit root model with heterogeneous drifts, note that
if we impose m = 0 and 3 = 1 then we have model 6; the x? (2) statistic for this
restriction is 2.17 so that we would not reject the unit root with heterogeneous
drifts.

5.4. Some implications of the estimates.

We can now pull together the implications of the foregoing analysis. First, as
we have seen, the unit root model (model 6) and the stationary model (model
7) cannot be rejected against the mixture model (model 9). We also found that
the unit root model is not rejected against the stationary model. Thus we can
conclude that the preferred model for this data is the one that imputes a unit root
to everyone. Note that our version of the ‘pure’ unit root case allows for much
more heterogeneity than any of the unit root models given in Table A1. We now
briefly present two implications of this extra heterogeneity.

In figure 5.3 we present the distribution of variances implied by model 6 para-
meter estimates. We also add a vertical line at the (homogeneous but fat tailed)
variance given for model 2. The important feature of the figure is that the mean
of the distribution is close to the homogeneous estimate so that any inferences
that use linear functions of the variance are unlikely to be much affected by allow-
ing for heterogeneity. On the other hand, many uses of the earnings process use
non-linear functions of the variance. A pre-eminent example is the literature on
the importance of the pre-cautionary motive for saving (see, for example, Carroll
and Samwick (1997)). Impatient agents with a precautionary motive and given
labour supply have a saving function which is increasing and convex in earnings
risk. Thus agents who have a variance of, say, twice the mode (that is, about 0.1)
will have a much higher level of precautionary saving than those at the mode; at
the very top of the distribution a variance of 0.2 is very high indeed (one third
of the time earnings will either rise or fall by over 35%) and agents would need
substantial buffer stocks to smooth consumption in the face of this variation. Con-
versely, very many agents will have almost no precautionary motive since their
earnings variance is small. Thus the heterogeneity in earnings will translate into
an even more dispersed buffer stock savings distribution. Note, however, that
this assumes fixed labour supply; if some of the variation in earnings is due to
variations in labour supply (perhaps in response to variations in wages) which is
not to be accounted risk.?’

20 Although we have conditioned on being in full time employment for the whole 16 year period,
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Figure 5.3: The distribution of variances
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The other implication of the heterogeneity we have found that we wish to
highlight is given in figure 5.4 which presents the relationship between the initial
value and the variance. As can be seen, there is a positive trade-off between
initial value and short run risk (the error variance) implied by the parameter
estimates from model 6. The main curve is the deterministic function given by

1), €Xp (S\ym) and the confidence intervals are given by the usual manipulations of

the log Normal.?! As can be seen the relationship is positive, which is consistent
with a model in which agents trade off initial value against short run risk. This
is a potentially important finding that can only be allowed for in a model which
has correlated heterogeneity in the variances.

These two examples illustrate that some important inferences are sensitive to
assumptions regarding heterogeneity. We consider now whether the process found
on the Danish sample - everyone with a unit root and an MA(1) process with
all parameters varying - can be considered ‘generic’ in the sense that we can use
this for other samples. To do this, we consider a very different sample of workers
drawn for the PSID.

5.5. Evidence from the PSID.

We have chosen to use a Danish sample since we can construct a very homogeneous
sample but still have a relatively large data set. The question arises: is there

workers may have a lot of overtime. Note as well that this is more prevalent for the sample -
those with a training as plumbers, electricians etc. - we have chosen.
2IFormally the mean of the individual variances is:

Min = 71y €xp (Xym)

and the (common) standard deviation is /7,. Define:

1 i
ap = 5 In /\Q—A
(771h + 772)
N ~2
by, — In (772:;771h>
Mn

exp (ap, £ 1.96b,)

which gives confidence bands of:
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Figure 5.4: The trade-off between levels and risk.
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something unusual about Danish workers that makes their earnings processes more
heterogeneous than we would see elsewhere? To be sure, the Danish labour market
environment is very different to that of, say, the U.S. or the U.K. (for example,
high levels of unionisation; almost no employment protection laws; very generous
unemployment insurance provisions etc.) and these differences might lead to more
heterogeneous earnings processes. In this sub-section we provide a brief account
of the application of our methods to a sample drawn from the PSID. The sample
consists of 792 married men who are each followed for at least 16 years. Exact
details of the sample can be found in the Appendix D.2. The main differences from
the Danish sample are that we do not rule out unemployment and we have a more
diverse educational background; a stringent selection as for the Danish data would
leave us with a very small sample. In the first column of Table 7 we present the
sample auxiliary parameter values. There are some noticeable differences between
these and the corresponding values for the Danish data. First, for the OLS fits, the
mean of the OLS slopes is much lower in the PSID data and the mean of the error
variances is much higher. The former suggests that pure unit root models might
not do as well as models with some stationary agents. The higher mean variance
is probably caused by two factors: the sample selection which does not rule out
unemployment spells for the PSID sample and the higher measurement error in
the PSID data. The higher (in absolute value) mean auto-correlation and lower
variance for the OLS auto-correlation are also consistent with the latter suggestion
since first differencing noise leads to a negative M A(1) error component and an
attenuation of the variance of the auto-correlation parameter estimates.

In terms of the substantive ap’s (those not based on the OLS regressions) we
see that the PSID data has a much higher trend in the variance (‘inequality’ is
increasing more over time); this may be attributable to the fact that in the PSID
we have a more diverse sample in terms of education so that the trend over time
contains a between group component as well as the within group component seen
in the Danish data. The other striking feature of the comparison of substantive
ap’s is that the variance of the first differenced data is much higher in the PSID;
this is consistent with the finding for the OLS error variances discussed above.
All of this suggests that we should not automatically expect that the same class
of model that was preferred for the Danish data (model 6 in which everyone has
a unit root but parameters are very heterogeneous) will work well here.

The first model we consider for the PSID is the closest to the Abowd and Card
and MaCurdy specifications (we shall refer to it as ACM) which they fitted on
the PSID; this is model 2, which assumes that everyone has an M A(1) in first dif-
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ferences with the same M A(1) parameter and a non-Normal error distribution.??
We fit to the mean of the OLS log variances (‘m(lv)’) and the variance and first
order autocorrelation. of the first differences (‘var, D’ and ‘acl, D’); the latter two
are chosen so as to be as close as possible to the original ACM procedure. The
results are presented in Table 7. The goodness of fit statistic is very high so that
the model does not fit very well the other ap’s. In particular, the ACM model
over-predicts the trend in variance very substantially. In terms of the OLS ap’s,
the ACM model substantially over-predicts the variance of the OLS intercepts
and the error variances. It is important to note that none of the diagnostics used
by Abowd and Card and MaCurdy would pick up these empirical failures of the
model. Given that this pure unit root model does not do very well, it might be
hoped that the more general one found on the Danish data (model 6) would do
much better. In fact, the converse is true. Using the same ap’s to fit as for the
Danish data, model 6 does not even converge; the lowest value we can find (after
an extensive search for starting values) is about 11. As can be seen from Table
7 the problem is with the variance of the OLS intercepts: we always over-predict
which suggests that the model introduces too much variation into the drift terms.
This is confirmed by the fact that the drift variance parameter is driven to zero
in the estimation.

Clearly, then, we cannot simply export results on the preferred class of processes
from one sample to another. We shall spare the reader the specification search
made for the PSID sample used here, but the model that we found that fitted
best was an eight parameter stationary ARM A(1,1) model with heterogeneous
AR parameters:

Ynt = O+ BpYni—1+ Ent + Oneni1
Op = YYn
Br,exp (81 + Bavy) / (14 exp (81 + Byvy))
U%L~ZN(7I1 exp(AyYn1),M2)
0, N (61, (62)%) (5.3)

We refer to this as model 10 since it is not nested within any of the previous
models (although it is close to model 8 with a different process for the intercept
ap). In model 10 we do not force the intercept to have a mean of (1 — ;) ym

?2The minimum distance techniques used by Abowd and Card and MaCurdy did not require
a specification for the error distribution and hence do not restrict the errors to be Normally
distributed.
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as for the Danish data; this weakening is necessary to accommodate the over-
prediction of the OLS intercept variance. The choice of ap’s (in fact the same as
for model 8 for the Danish data) and the fit of this model are given in Table 7.
The most satisfying aspect of this model is that the goodness of fit for the model
- a x?(14) of 10.4 - indicates that this model does fit adequately all of the ap’s
we have chosen to model. The parameter value estimates are:

5 = 0.025, B, =2.42, B, = 1.48, A = —0.22,
i, = 023,79, =0.13, 6, = —0.22, 6, = 0.17 (5.4)

The estimates for the AR parameters give a distribution that is skewed, the mean
and median are 0.85 and 0.92 respectively, but still with a substantial number of
agents with a low parameter: the first decile value is 0.63. Thus for our PSID
sample it seems that we need to assume that everyone has a stationary process
with heterogeneous AR parameters.

6. Conclusions.

In this paper we have considered the estimation on panel data of a univariate
earnings process allowing for lots of heterogeneity. To do this we have adapted
the SMD estimator to the dynamic panel, fixed T' framework and we have shown
how to conduct inference. The SMD approach is justified on the grounds that,
a priori, we have no idea what form heterogeneity should take so that we need
to start with simple models and build up to more general ones. A number of
conclusions emerge for the modelling of earnings processes:

e For a very homogenous sample of Danish workers, we find significantly more
heterogeneity than any previous investigator has allowed for.

e For our preferred model for the Danish data, we are unable to achieve a really
satisfactory fit to the statistics not used in the fitting. This suggests to us
that we need to relax the two step procedure that first regresses earnings
on time dummies and individual characteristics. This two step procedure
essentially assumes that all heterogeneity correlated with these factors can
be captured through heterogeneity in the levels regression intercept. Thus
we need to integrate the modelling of the wage equation (the levels equation)
with the dynamic process.
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e For the Danish sample we found that we can account reasonably well for the
time series facts without assuming changes in parameters over time (except
for those implicit in the first round regression), such as increasing mean risk.

e For the Danish sample a process that imputes a unit root to everyone does
best.

e The specific conclusion on the Danish sample is not ‘exportable’ since an in-
vestigation on a PSID sample leads to a completely different process: every-
one has a stationary process with heterogenous AR (1) parameters. This
process gives a good fit to all of the dynamic features of the PSID.

e The allowance for heterogeneity is critical for many substantive conclusions.
We have chosen to highlight two: the impact on the distribution of precau-
tionary saving and the relationship between the starting values and risk, but
almost all uses of the process estimates will be seriously affected.

The foregoing analysis suggests a number for directions for future work. First
it will be fruitful to check how well SMD based inferential procedures for fixed
T univariate panel data do against other tests for, for example, unit roots versus
stationary processes. Related to this, we plan to compare the SMD fits to ML
fits for our preferred models. Second, it would also be of interest to develop for-
mal tests between models such ours which have a good deal of individual ‘fixed’
heterogeneity and models that allow for time varying macro parameters. Third,
the methods here could be applied to models of earnings processes that are not
based on the conventional two step regression procedure. For example, for sta-
tionary models with heterogeneous AR (1) parameters we could allow that this
heterogeneity is correlated with age. Finally, the methods suggested here could
be applied to multivariate processes for, for example, unemployment and earnings
or for joint husband and wife earnings. The latter would allow us to consider, for
example, whether earnings risks are correlated within the household.

To sum up: our broad conclusion is that there is much more heterogeneity in
earnings processes both within groups and between groups than has previously
been allowed for. This will make future modelling more difficult since we cannot
simply pull down an earnings process off the shelf in any given context. Our
results also indicate that not accounting for heterogeneity may lead to serious
bias in substantive inferences.
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A. Previous studies.

TABLE Al: Previous studies.

Author

Data, sample size

Unit root or

stationary

(year) and period
Hause Swedish Low-income Commision study, 135 individuals unit root in levels
(1977) 1951-1966 (7 periods)

Lillard and Willis

(1978)

PSID, 1144 individuals

1967-1973 (7 year)

non unit root in levels

Lillard and Weiss

National Science Foundation’s Reg

., 4330 obs

non unit root in levels

(1979) 1960-1970 (every second year)
MaCurdy PSID, 513 individuals unit root in levels
(1982) 1967-1976 (10 years) non unit root in first differences

Abowd and Card

(1989)

PSID, 1448
1969-1979 (11 years)
NLS, 1316

1966-1975 (6 years)

Seattle and Denver Income Maintenance Experiment, 560 individuals

1971-1972 (8 quarters)

unit root in levels

non-unit roots in first differences

Gottschalk and Moffitt

PSID, 2730 individuals

mainly non unit root

one case with unit root

(1994) 1970-1987
Baker PSID, 534 individuals non unit root
(1997) 1967-1986, (20 years) (few specifications with unit root)

Chamberlain and

Hirano (1997)

PSID, 813 individuals

1967-1991 ( 10 years)

non unit root in levels

(but very close to unit root)

Geweke and Keane

PSID, 4766 individuals

non unit root in levels

(1997) 1967-1989
Ulrick PSID, 4766 individuals non unit root in levels
(2000) 1967-1989 (same data as G&K)
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TABLE Al: Previous studies (continued).

Author Other
) . L2

(year) Process Heterogeneity features
Hause MA(1l), MA(2) intercept and slope

(1977) or AR(1) with a unit root of time trend

Lillard and Willis

(1978)

AR(1)

(common factor model)

intercept

balanced sample

Lillard and Weiss

(1979)

AR(1)

(common factor model)

intercept and slope

of time trend

unbalanced sample

MaCurdy

(1982)

ARMA(0,2), ARMA(0.3)

ARMA(0,1), ARMA(1.1)

intercept and slope

of time trend

balanced sample

Abowd and Card

(1989)

MA(2)

intercept and slope of

time trend

Gottschalk and Moffitt

ARMA(1L,1)

intercept and slope

unbalanced sample

(1994) of age
Baker ARMA(1,2) intercept and slope balanced sample
(1997) (common factor model) of age

Chamberlain and

Hirano (1997)

AR(1)

(common factor model)

intercept, variance and

autoregressive parameter

balanced sample

Geweke and Keane AR(1) intercept unbalanced sample
(1997)
Ulrick AR(1) intercept unbalanced sample
(2000)

1. For unit roots the process is for the first difference.

2. For unit roots, heterogeneous intercepts are allowed

for implicitly.
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B. Comments on Table A.1l.

Table A.1 summarises the features of ten leading empirical studies of earnings
dynamics. Although many of the studies use the PSID data, there are considerable
differences in how the sample is selected (this aspect is not included in the table).
All studies except Lillard and Weiss (1979) focus entirely on males. Some of
the studies restrict the sample to homogenous groups (e.g. narrowed age and
cohort groups, scientists or husbands continuously married to the same wife). As
regards sample size, all studies using a balanced data set contain less than 1500
individuals (the smallest sample consists of 135 individuals). The unbalanced
samples are somewhat larger. The sample periods of the studies cover a 40 year
period from 1951-1991, where the maximum period of a balanced data set is 20
years (Baker (1997)) and 22 for an unbalanced (Geweke and Keane (1997) and
Ulrick (2000)).

In the third column we list whether the process contains a unit root. When the
process does not contain a unit root process we do not necessarily mean that the
process is assumed stationary. Most of the studies assuming no unit root process
allow for some kind of non-stationarity. Some allow that the distribution of the
initial observation might differ from the remaining process and others allow that
the variances vary across time. About half of the studies assume a unit root, and
most of these deal with it by working with earnings growth instead of the level of
earnings (MaCurdy (1982), Abowd, Card (1989) and Baker (1997)).

When modelling the dynamic process all studies except Geweke and Keane
(1997) and Ulrick (2000) use a two-step procedure. In the first step earnings or
earnings growth are regressed on a number of individual characteristics (e.g. age)
and time dummies, normally using OLS-estimation. Then subsequent analysis is
based on the residuals from the first regression. In many of the studies the errors
are assumed to follow an AR(1) process, which is equivalent to assuming a common
factor model of the earnings or earnings growth. The parameters of the dynamic
process are estimated in the second step. In Geweke and Keane (1997) and Ulrick
(2000) the impact of the individual characteristics are estimated together with the
dynamic process.

Column five reports the level of individual heterogeneity in the model. All
of the models allow for individual heterogeneity in the level of the earnings. In
some of the models a time trend is allowed to vary across individuals (given
an individual specific effect in the levels the time trend is equivalent to an age
trend). Furthermore one study (Chamberlain and Hirano (1997)) uses a model
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with heterogeneity in the variance of the error terms.

C. Tables.
TABLE 1: Monte Carlo results
| S=1 | S =2 | S=5
True JI 0] JI Ol JI Ol
« 0 0.013 0.081 0.016 0.074 0.013 0.10
(sd) (0.06) | (0.37) (0.04) | (0.55) (0.02) | (0.45)
O 5 5.00 5.01 5.00 5.01 5.00 5.03
(sd) (0.02) | (0.16) (0.02) | (0.24) (0.01) | (0.19)
0 —10 || —10.1 | —-10.0 —10.1| —-10.9 —-10.1 | —-10.1
(sd) (1.3) (0.69) (0.92) | (0.61) (0.53) | (0.63)
mean (x?) 16.7 144 14.5 113 13.3 298
median(x?) 15.9 15.1 14.0 13.6 13.0 13.5
var(x?) 34.6 | 2.8x%10° || 20.6 | 2.1x%10° 9.0 |8.0x%10°
d.f. 19 19 19 19 19 19
| # replications || - ||| 3194 || 2104 || 622

| Means and standard deviations for parameter values multiplied by 100.
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TABLE 2: Results for unit root models

Auxiliary Data Simulated models
Parameter | Value la | 1b | 2 3 4 5 6
m(in) 0.05 —0.07 0.34 0.15 0.32 0.34 0.08 0.55
(0.28) [—0.32] [0.73] [0.26] [0.69] [0.74] [0.09] [1.26]
m(sl) 60.04 64.36 57.59 67.92 62.39 62.42 58.18 61.58
(0.67) [4.58] [—2.59] [8.33] [2.49] [2.52] [—1.96] [1.63]
m(lv) —613.99 | —613.99 | —538.41 | —613.99 | —613.99 | —613.99 | —613.99 | —613.99
(2.75) ] [19.45] ] ] ] ] ]
m(au) —-1.79 -1.79 -3.93 —-1.79 —-1.79 —-1.79 -1.79 —-1.79
(047) | 1] | [=324] | ] i ] i ]
v(in) 1.65 1.06 1.62 1.26 1.4 1.3 1.65 1.6
(0.10) [—4.23] | [-0.22] | [-2.76] | [-1.68] | [—1.94] [] ]
v(sl) 9.44 6.48 7.89 8.10 7.09 7.10 7.80 9.9
(0.45) [—4.62] | [-2.42] | [-2.09] | [-3.68] | [—3.66] | [—2.56] [0.80]
v(lv) 160.82 19.53 19.02 160.82 160.82 160.82 160.82 160.82
(4.78) | [-20.91] | [—20.99] [] [] ] [] ]
v(au) 4.56 3.79 3.26 3.70 3.59 3.6 3.74 4.56
(0.14) [—3.79] | [-6.45] | [-4.27] | [-4.78] | [—4.76] | [—4.06] ]
c(in,sl) —5.02 —-1.75 —-2.97 0.73 —4.08 -3.59 0.31 —-1.75
(3.29) [0.70] [0.44] [1.24] [0.20] [0.31] [1.15] [0.70]
c(in,lv) 33.72 —0.82 —4.49 —2.34 —3.40 33.72 33.72 33.72
(1.99) | [-12.24] | [-13.54] | [-12.78] | [—13.16] ] [] ]
c¢(in,au) 4.64 2.57 1.22 —1.96 1.92 0.63 —-3.77 0.31
(1.88) [—0.78] | [-1.29] | [-2.49] | [-1.08] | [-1.51] | [-3.17] | [-1.63]
c(sl,lv) —16.27 23.88 21.76 14.58 7.10 5.18 12.15 —9.29
(2.42) [11.72] [11.11] 9.01] [6.83] 6.27] [8.30] [2.04]
c(sl,au) 1.27 —8.82 —11.08 | —19.98 —6.97 -7.11 —14.69 —1.90
(1.85) [—3.86] | [-4.73] | [-8.14] | [-3.16] | [=3.21] | [-6.11] | [—1.22]
c(lv,au) 2.65 1.58 —5.02 —8.99 —0.06 0.12 —7.49 8.35
(2.12) [—0.36] | [-2.56] | [-3.89] | [-0.91] | [-0.85] | [—3.39] [1.90]
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TABLE 2 (continued)

Auxiliary | Data Simulated models
Parameter | Value la | 1b | 2 3 | 4 5) 6

vtrend 0.37 0.24 0.42 0.46 0.47 0.44 0.40 0.48
(0.03) | [-3.48] | [1.12] [2.21] [2.47] [1.68] [0.75] (2.77]

vtrsd 0.30 0.05 0.07 0.08 0.10 0.09 0.11 0.11
(0.05) | [-3.30] | [=3.07] | [-2.97] | [-2.64] | [-2.79] | [-2.54] | [-2.58]

D, var 0.64 0.29 0.64 0.49 0.61 0.55 0.57 0.58
(0.03) | [—9.20] [] [—4.10] | [-0.91] | [—2.34] | [-1.93] | [-1.55]
D, acl —18.60 | —9.85 | —18.60 | —4.92 | —11.55 | —11.56 | —15.53 | —14.07
(1.26) [4.93] [] [7.70] [3.97] [3.96] [1.72] [2.55]

D, ac2 —1.29 0.11 —1.35 0.14 —1.34 | -1.33 | =141 | —0.75
(1.16) [0.85] | [-0.04] | [0.86] | [—0.03] | [-0.03] | [-0.07] | [0.33]

p(2,3) 87.31 82.11 75.98 87.54 80.70 84.24 80.70 84.95
(1.42) | [-2.59] | [-5.66] | [0.12] | [-3.30] | [-1.53] | [-3.30] | [-1.18]

p(2,16) 59.23 55.69 46.96 51.44 51.20 55.21 54.98 50.02
(1.88) | [-1.33] | [-4.61] | [-2.92] | [-3.01] | [-1.51] | [-1.60] | [—3.46]

p(half) 19.87 18.88 18.17 18.92 18.74 18.97 19.02 19.02
(0.31) | [-2.25] | [-3.86] | [-2.15] | [-2.57] | [-2.04] | [-1.93] | [-1.93]

GF test 855.89 | 1203.77 | 489.41 | 410.07 | 157.23 | 242.46 | 60.51
df 20.00 20.00 19.00 19.00 18.00 17.00 16.00

Notes. All values multiplied by 100.

(.) = standard deviation for the data value

[t] = t-values for the difference between the simulated and data values

[.] indicates that auxiliary parameter used for fitting

(in, sl, v, au) = OLS intercept, slope, log variance and auto-correlation

m(.) = mean; v(.) = variance; ¢(.,.) = correlation

'vtrend’ = trend of cross-section variance

'vtrsd’ = standard deviation of errors from trend of cross-section variance

D’ = first differenced mean and first two auto-correlations

'p(2,t)" = probability of being in the bottom quintile in year t,

given in bottom quintile in year 2

'p(half)’ = probability of being in bottom quintile for at least 8 of 15 years

"GF’ is the chi-squared goodness of fit test statistic

'df’ is the degrees of freedom for the goodness of fit test
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TABLE 3: Models and estimates.

| Model | Process
1 (unit root) Aypy = epg + Oep 1 with e, N(0, a?)
AP’s for la m(lv); m(au)
Estimates of la | 8 = —0.104, 6 = 0.053
AP’s for 1b Variance and first order autocorrelation of differences

Estimates of 16

0= 0201, 6 = 0.079

2 (unit root)

As model 1 with fat tails.

ent”N(0,07) with probability 0.8

and ep;” N (0,0%) with probability 0.2

AP’s for 2

m(lv); m(au); v(Iv)

Estimates of 2

6= —0.053, 61 = 0.014, 65 = 0.152

3 (unit root)

As model 1 with uncorrelated heterogeneity in variances.

ent N(0, U,QL) where (ffle(m, n3)

AP’s for 3

m(lv); m(au); v(lv)

Estimates of 3

0 =—0.124, i, = 0.065, 7, = 0.044

4 (unit root)

As model 3 with correlated heterogeneity in variances.

My = exp(Ayn1) * 1

AP’s for 4

m(lv); m(au); v(Iv); c(in, 1v)

Estimates of 4

0=—0.124, i, = 0.062, Ay = 0.032, A = 1.31

5 (unit root)

As model 4 with uncorrelated heterogeneity in drifts

Aypt = o, + ent + 0211 , an” N(0,(4)7)

AP’s for 5

m(lv); m(au); v(Iv); c(in, 1v); v(in)

Estimates of 5

6 = —0.167, i, = 0.062, 7, = 0.034, A = 1.21, ¢ = 0.195

6 (unit root)

As model 5 with heterogeneity in MA parameter.

Ay = ap +epg + O0neng 1, 0" N(071,(02)%)

AP’s for 6

m(lv); m(au); v(Iv); c(in, 1v); v(in); v(au)

Estimates of 6

b, = —0.148, 0 = 0.283 , /), = 0.059, #), = 0.029,

A =151, ¢ = 0.007

Estimates of 6

(Over-identified)

01 = —0.161, 05 = 0.276, 71, = 0.061, 7, = 0.031,
A =1.37, ¢ =0.007

Estimates of 6
(S =20)

b, = —0.172, 85 = 0.300, 7); = 0.059, 7}, = 0.030,
X =1.35, ¢ = 0.007
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TABLE 3 (contd.)

Model

Process

7 (stationary)

Stationary process with homogeneous AR parameter.

Model 6 with no unit root.

Ynt = Op + BYni—1 + Ent + Oneng1

with U%LNZN(W exp()‘yhl)v772)v 9h~N(917 (92)1)

and ap = (1 — 3) yp1 + vy, with v, "N(0, @)

AP’s for 7

m(lv); m(sl); m(au); v(in); v(lv); m(au); c(in,lv)

Estimates of 7

01 = —0.116, 05 = 0.237, i), = 0.058, 71, = 0.029,

N=1.45, = 0.022, 3 = 0.893

8 (stationary)

As model 7 with heterogeneous AR parameters.

Yut = Op + BpYnis—1 + Epe + Oncni—1

Br”exp (81 + Bavn) / (14 exp (81 + Bava))
with 7, ~ N (0,1)

AP’s for 8

As model 7 plus v(sl)

Estimates of &8

01 = —0.133, 05 = 0.269, 7}, = 0.058, 71, = 0.030,
A =1.40, ¢ = 0.016, 3, = 2.89, B, = —1.042

9 (mixed) Mixture of models 6 and 7.
With probability 7: ype = o, + /Byh,tfl +Ept + 9h5h,t—1
ap = (1= ) yn + va and v, N(0,(¢)%)
with probability (1 —m): Ayns = ens + Oneni—1

AP’s for 9 As model 8.

Estimates of 9

01 = —0.149, 05 = 0.278, 7, = 0.059, 71, = 0.030
N=1.41, = 0.035, 3 = 0.929, 7 = 0.309

Notes. (in, sl, lv, au) = OLS intercept, slope, log error variance,

first order autocorrelation.

m(.) = mean; v(.) = variance; c(.,.) = correlation.
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TABLE 5: Results for stationary and mixed models

Auxiliary Data Stationary Mixed
Parameter | Value 7 | 8 9
m(in) 0.05 0.52 0.47 0.39
[0.28] [1.19] [1.07] [0.87]
m(sl) 60.04 60.04 60.04 60.04
[0.67] ] ] ]
m(lv) —613.99 | —613.99 | —613.99 —613.99
[2.75] ] [] []
m(au) -1.79 -1.79 —1.79 -1.79
[0.47] B ] ]
v(in) 1.65 1.6 1.65 1.65
[0.10] ] [] []
V(&) 9.44 7.9 9.44 9.44
0.45] | [=2.32] [] ]
v(Iv) 160.82 | 160.82 | 160.82 160.82
[4.78] ] ] []
v(au) 4.56 4.56 4.56 4.56
[0.14] ] ] ]
c(insl) | —5.02 | —6.23 | —2.46 ~0.07
[3.29] [—0.26] [0.55] [1.06]
c(in,lv) 33.72 33.72 33.72 33.72
[1.99] ] [] []
c¢(in,au) 4.64 3.41 2.27 —0.63
[1.88] (—0.47] | [-0.90] [—1.99]
c(SIv) | —1627 | —15.84 | —13.10 —251
2.42] | [0.13] | [0.93] [4.02]
c(sLa) 127 | —230 | —4.42 —1.66
[1.85] | [-1.37] | [-2.18] [—1.12]
c(lv,au) 2.65 16.04 12.52 3.88
2.12] | [447 | [3.30] [0.41]
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TABLE 5 (continued)
Auxiliary | Data Stationary Mixed
Parameter | Value 7 | 8 9

vtrend 0.37 0.34 0.39 0.55
[0.03] | [-0.93] | [0.57] [4.46]

vtrsd 0.30 0.23 0.09 0.07
[0.05] | [-0.93] | [-2.73] | [—3.06]

var, D 0.64 0.58 0.58 0.59
[0.03] | [-1.63] | [-1.49] | [—1.34]
acl, D —18.60 | —14.77 | —15.54 | —13.16
[1.26] [2.15] [1.72] 13.06]

ac2, D —1.29 | —3.49 | —2.67 0.17
[1.16] | [—1.34] | [-0.84] | [0.89]

p(2,3) 87.31 82.35 83.77 83.06
[1.42] | [-2.48] | [-1.77] | [-2.12]

p(2,16) 59.23 49.79 50.26 46.01
[1.88] | [—3.54] | [-3.37] | [—4.96]

p(half) 19.87 18.92 19.25 18.88
[0.31] | [-2.15] | [-1.39] | [—2.25]

GF test 66.10 56.22 92.22
df 15.00 14.00 14.00

| Notes. See Table 3.
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TABLE 7: Results for PSID data

Auxiliary Data Unit root Stationary
Parameter | Value 2 | 6*** 10
m(in) —0.99 —1.36 0.43 —0.11
[1.02] [—0.26] [0.98] [0.61]
m(sl) 35.56 40.56 54.98 35.56
[1.15] 13.08] [11.95] []
m(lv) —344.81 | —344.81 | —348.15 | —344.81
[4.15] ] ] ]
m(au) -3.21 —8.24 —3.66 -3.21
057 | (<620 | ] i
v(in) 8.26 19.26 9.87 8.26
[0.74] [10.58] [] []
v(sl) 10.38 15.00 8.74 10.38
[0.47] 6.97] [—2.47] []
v(lv) 133.85 271.09 132.89 133.85
[6.01] [16.15] [] []
v(au) 2.54 3.57 3.24 2.54
017 | 419 | ] !
c(in,sl) 6.36 6.47 5.4 1.75
[4.42] [0.02] (—0.15] [—0.74]
c(in,lv) —17.43 —5.29 —15.75 —17.43
[3.99] [2.15] [] []
c(in,au) —5.76 —4.76 —5.06 —2.91
[3.54] [0.20] [0.14] [0.57]
c(sl,lv) —15.87 16.82 7.92 —6.23
[3.46] [6.68] [4.86] [1.97]
c(sl,au) -7.07 —-29.63 | —15.19 -9.21
[3.87] [—4.12] | [-1.48] [—0.39]
c(lv,au) 7.35 —20.12 —7.27 0.04
[3.61] [—5.39] | [—2.87] [—1.43]
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TABLE 7 (continued)
Auxiliary | Data Unit root Stationary
Parameter | Value 2 | 6*** 10

vtrend 0.88 3.32 4.37 0.79
[0.16] | [11.02] | [15.79] [—0.44]

vtrsd 1.52 2.27 0.93 1.08
[0.39] [1.34] | [-1.06] —0.79]

var, D 9.92 9.92 7.63 9.45
[0.58] ] [—2.79] (—0.57]
acl, D —35.67 | —35.67 | —23.06 —36.79
[1.37] ] 6.51] (—0.58]

ac2, D —1.47 0.4 0.60 —0.23
[1.64] [0.84] [0.89] [0.53]

p(2,3) 70.08 71.97 75.76 71.34
13.06] [0.44] [1.31] [0.29]

p(2,16) 45.45 47.98 53.66 43.56
(3.25] [0.55] [1.79] [—0.41]

p(half) 16.41 18.43 18.43 17.05
[0.66] 2.15] 2.15] [0.67]

GF test 680.82 | 431.21 10.39
df 19.00 16.00 14.00

| *** Model 6 did not converge (see text for details). |
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D. Data descriptions
D.1. The Danish Data

In this paper we use two different data sets. The first data set comes from the Danish
register data set, which contains information on the Danish population. Our main data
set, consists of 2119 men with a vocational training, who we follow for the period 1981-
1996. We select so that all the sample have been full time employed in all 16 years and
continuously married to or cohabiting with the same spouse during the sample period.
The sample is restricted to men aged 30-39 in 1981. The final sample is a balanced
sample where all individuals are exactly observed in 16 years.

The income variable is defined as gross annual earnings. This variable is defined on
the basis of information from the tax authorities and is therefore very reliable. This
means that measurement errors are not likely to be a major problem using the Danish
data. Average real earnings for our sample increases about 25% over the data period. As
in most of the previous studies of income dynamics we use a two-step procedure to when
estimating the income process. In the first step log annuals earnings are regressed on
individual characteristics and time dummies. In the sample of men we use age and age
squared, experience and experience squared and time dummies as explanatory variables.
The distribution of experience is presented in Table D1.

Table D1: The Distribution of experience.
Experience in 1981 Number in sample
Less than 6 years 7

6-8 years 27
9-11 year 234
12-14 years 600
15-16 years 529
17 years or more 722
Total 2119

D.2. The PSID data

The second data set is a subsample of the PSID. To make the data as comparable as
possible we have here restricted the data such all the individuals are in the sample for
exactly 16 years. The sample contains 792 men who are aged between 20-66 in the
sample period??. They all report positive earnings and positive working hours in all 16
years. Furthermore they are continuously reported as the head of household and married
or cohabiting. The data set is balanced in the sense that all individuals are observed

23In order to get a sample of a reasonal size we do not limit our selves to a narrow age group.
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the same number of time periods, but they may be observed in different calendar years.
The entire observation period is from 1968 to 1992, where 477 individuals are observed
in 1968, all individuals are observed in the period 1977-1983 and only 43 in 1992. This
data set is a good deal less homogenous compared to the Danish data sets in several
aspects: more variations in working hours, wider age group and covers different calendar
years. On the other hand the selection on being in the sample for at least 16 years with
positive earnings in every year and being continuously married means that our sample
is probably much more ‘stable’ than some of the other samples used in previous studies.
The earnings variable is defined as total annual labour market income of the head. This
variable is self-reported and corresponds to the year before the interview year.

To make this data set comparable to the Danish ones, we use the two-step procedure.
The log earnings are regressed on age, age squared, educational dummies and year
dummies. In the Tables D2 and D3 we present the distributions of age and educational
attainment in 1977.

Table D2: The Distribution of age
Age in 1977 Number

20-24 25
25-29 118
30-34 145
35-39 133
40-44 106
45-49 113
50-54 101
55-59 47
60-64 4
Total 792

Table D3: The Distribution of educational attainment
Educational attainment in 1977 Number

can not read 6
0-5 grades 11
6-8 grades 62
9-11 grades 106
12 grade 376
college degree 231
Total 792
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