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1 Introduction and basic model

Panel data are a valuable source of information for theory-data confrontation in

contemporary econometrics. The panel data available are frequently from indi-

viduals, firms, or other kinds of micro units. A primary reason for the strongly

increasing utilization of panel data during the last three decades seems to be the

opportunity which such data offer for ‘controlling for’ unobserved individual and/or

time specific heterogeneity which may be correlated with the included explanatory

variables. As is well known, the effect of individual heterogeneity in a panel data

set relative to a linear equation can be removed by measuring all variables from

their individual means or by operating on suitably differenced data.

Micro data, including panel data, and inferences drawn from such data may,

however, have deficiencies following from measurement errors. Not only observa-

tion errors in the narrow sense, but also departures between theoretical variable

definitions and their observable counterparts in a wider sense may be present. A

familiar property of the Ordinary Least Squares (OLS) in the presence of random

measurement errors (errors-in-variables, EIV) in the regressors is that the slope

coefficient estimator is inconsistent. In the one regressor case (or the multiple

regressor case with uncorrelated regressors), under standard assumptions, the esti-

mator is biased towards zero, often denoted as attenuation. More seriously, unless

some ‘extraneous’ information is available, e.g., the existence of valid parameter

restrictions or valid instruments for the error-ridden regressors, slope coefficients

cannot in general be identified from standard data [see Fuller (1987, section 1.1.3)].1

This lack of identification in EIV models, however, relates to uni-dimensional data,

i.e., pure (single or repeated) cross-sections or pure time-series. If the variables are

observed as panel data, exhibiting two-dimensional variation, it may be possible to

handle jointly the heterogeneity problem and the EIV identification problem and

estimate slope coefficients consistently and efficiently without extraneous informa-

tion, provided that the distribution of the latent regressors and the measurement

errors satisfy certain weak conditions.
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Briefly, the reason why the existence of variables observed along two dimensions

makes the EIV identification problem more manageable, is partly (i) the repeated

measurement property of panel data – each individual and each period is ‘replicated’

– so that the effect of measurement errors can be reduced by taking averages, which,

in turn, may show sufficient variation to permit consistent estimation, and partly

(ii) the larger set of other linear data transformations available for estimation.

Such transformations may be needed to compensate for uni-dimensional ‘nuisance

variables’ like unobserved individual or period specific heterogeneity, which are

potentially correlated with the regressor.

From the panel data literature disregarding the EIV problem we know that

the effect of, say, additive (fixed or random) individual heterogeneity within a

linear model can be eliminated by deducting individual means, taking differences

over periods, etc. [see Hsiao (1986, Section 1.1) and Baltagi (2001, Chapter 2)].

Such transformations, however, may magnify the variation in the measurement er-

ror component of the observations relative to the variation in the true structural

component, i.e., they may increase the ‘noise/signal ratio’. Data transformations

intended to ‘solve’ the latent heterogeneity problem may then aggravate the EIV

problem. Several familiar estimators for panel data models, including the fixed

effects within-group and between-group estimators, and the random effects Gen-

eralized Least Squares (GLS) estimators will then be inconsistent, although to a

degree depending, inter alia, on the way in which the number of individuals and/or

periods tend to infinity and on the heterogeneity of the measurement error process.

See Griliches and Hausman (1986) and Biørn (1992, 1996) for examples for one

regressor models.

If the distribution of the latent regressor vector is not time invariant and the

second order moments of the measurement errors and disturbances are structured

to some extent, several consistent instrumental variables estimators of the coeffi-

cient of the latent regressor vector exist. Their consistency is robust to correlation

between the individual heterogeneity and the latent regressor. Serial correlation
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or non-stationarity of the latent regressor is favourable from the point of view of

identification and estimability of the coefficient vector. Briefly, there should not be

‘too much structure’ on the second order moments of the latent exogenous regres-

sors across the panel, and not ‘too little structure’ on the second order moments

of the errors and disturbances; see Biørn (2000, section 2.b).

The focus of this paper is on the estimation of linear, static regression equations

from balanced panel data with additive, random measurement errors in the regres-

sors by means of methods utilizing instrumental variables (IV’s). We consider a

data set with N (≥ 2) individuals observed in T (≥ 2) periods and a relationship

between y (observable scalar) and a (1 ×K) vector ξ (latent),

yit = c+ ξit β + αi + uit, i = 1, . . . , N ; t = 1, . . . , T,(1)

where (yit, ξit) is the value of (y, ξ) for individual i in period t, c is a scalar constant,

β is a (K × 1) vector and αi is a zero (marginal) mean individual effect, which

we consider as random and potentially correlated with ξit, and uit is a zero mean

disturbance, which may also contain a measurement error in yit. We observe

xit = ξit + vit, i = 1, . . . , N ; t = 1, . . . , T,(2)

where vit is a zero mean vector of measurement errors. Hence,

yit = c+ xit β + εit, εit = αi + uit − vit β,(3)

or in vector form,

yi· = eT c+ X i· β + εi·, εi· = eTαi + ui· − V i· β, i = 1, . . . , N,(4)

where yi· = (yi1, . . . , yiT ) ′, X i· = (x ′
i1, . . . ,x

′
iT ) ′, etc., and eT is the (T × 1) vec-

tor of ones. We denote εit as a composite error/disturbance. We assume that

(ξit, uit,vit, αi) are independent across individuals [which excludes random period

specific components in (ξit, uit,vit)], and make the following basic basic orthog-

onality assumptions, corresponding to those in the EIV literature for standard
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situations:2

Assumption (A):



E(v ′
ituiθ) = 0K1,

E(ξ ′
ituiθ) = 0K1,

E(ξ ′
iθ ⊗ vit) = 0KK ,

E(αivit) = 01K ,

E(αiuit) = 0,

i = 1, . . . , N,

t, θ = 1, . . . , T,

where 0mn denotes the (m×n) zero matrix and ⊗ is the Kronecker product operator.

We can eliminate αi from (3) by taking arbitrary backward differences ∆yitθ =

yit − yiθ = dtθyi·, ∆xitθ = xit − xiθ = dtθX i·, etc., where dtθ is the (1 × T ) vector

with element t equal to 1, element θ equal to -1 and zero otherwise. Premultiplying

(4) by dtθ, we get3

∆yitθ = ∆xitθ β + ∆εitθ, t = 2, . . . , T ; θ = 1, . . . , t−1.(5)

In the next section, we present an interpretation of this model framework based

on production theory and a panel of manufacturing firms. In the following sec-

tions, we describe the estimation methods and introduce the additional assumptions

needed. Two kinds of estimation methods will be in focus: (i) Methods operating

on period means, illustrating applications of the repeated measurement property of

panel data (Section 3), and (ii) Generalized Method of Moments (GMM) procedures

(Sections 4 – 6). The GMM procedures involve a mixture of level and difference

variables and are of two kinds: (a) The equation is transformed to differences, as

in (5), and is estimated by GMM, and as instruments we use level values of the

regressors and/or regressands for other periods. (b) The equation is kept in level

form, as in (3), and is estimated by GMM, and as instruments we use differenced

values of the regressors and/or regressands for other periods. Our (a) procedures

extend and modify procedures proposed in Griliches and Hausman (1986), Wans-

beek and Koning (1991), Arellano and Bover (1995), Biørn (1992, 1996), Biørn and

Klette (1998, 1999), and Wansbeek (2001).
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2 Application: Input

elasticities in manufacturing
We next present a simple interpretation of (1) with a single regressor (K = 1), to

be used as basis for our empirical applications. The data are from eight successive

annual Norwegian manufacturing censuses for the years 1983 – 1990 (T = 8),

collected by Statistics Norway, for four two-digit sectors, comprising 1647 firms

(plants): Manufacture of Textiles (ISIC 32) (N = 215), Manufacture of Wood and

Wood Products (ISIC 33) (N = 603), Manufacture of Paper and Paper Products

(ISIC 34) (N = 600), and Manufacture of Chemicals (ISIC 35) (N = 229). The

data base specifies labour, capital, and materials (including energy) inputs, but for

our illustrative purposes and in order not to inflate our tables of results, we confine

attention on the two latter. This pair of inputs is interesting since capital raises

much heavier measurement problems than materials, although both inputs and the

output contain potential measurement errors, both in the strict and wide sense.

Our measure of capital input is based on deflated fire insurance values, which is

a wealth related measure and hence contain potential errors as indicators of the

productive capacity of the capital.

Let us, with reference to production theory, describe two alternative interpreta-

tions of the model (1) – (5). We do not go deeply into the problems of theory-data

confrontation and refer to Stigum (1995) for a thorough discussion.

The first and simplest interpretation is to assume a technology with one output

X∗
it and one input Y ∗

it , i.e., either capital or materials, both latent. Firm specific

differences in technology are represented by the factor eφi , indicating firm i’s de-

parture from the technology of the average firm (characterized by φi = 0). We

specify the technology as

X∗
it = eφiF (Y ∗

it ) = Aeφi(Y ∗
it )

µ,(6)

where A is a positive constant, µ is the scale elasticity for this one factor Cobb-

Douglas technology, and E(φi) = 0. We can allow for an unspecified period specific
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effect by extending (6) to

X∗
it = eφiFt(Y ∗

it ) = Aeφieψt(Y ∗
it )

µ,(7)

where E(φi) = E(ψt) = 0.

The second interpretation is to assume a (neo-classical) technology with one

output and several inputs, of which two are capital and materials, and output

constrained cost minimization. Let X∗
it denote output, Y ∗

it = (Y ∗1
it , . . . , Y

∗G
it ) the

vector of G inputs, and w∗
t = (w∗1

t , . . . , w
∗G
t ) the vector of input prices, common to

all firms – all treated as latent variables. We describe the technology by

X∗
it = eφiFt(Y

∗
it ),(8)

where Ft is a production function common to all firms, t reflecting that tech-

nological changes are allowed for. We interpret φi as a constant known to firm

i, but unobserved by the econometrician. The dual cost function can then be

written as C∗
it = Gt(w

∗
t , e

−φiX∗
it) [cf., e.g., Jorgenson (1986, section 5)], where

C∗
it =

∑G
k=1w

∗k
t Y

∗k
it . Using Shephard’s lemma, we can express firm i’s optimal

input of factor k in year t as

Y ∗k
it = gkt (w

∗
t , e

−φiX∗
it),(9)

where gkt (·) = ∂Gt(·)/∂w∗k
t . Assuming that Ft represents a homothetic technology,

so that Gt can be separated as Gt(w
∗
t , e

−φiX∗
it) = Ht(w

∗
t )K(e−φiX∗

it), where the

functions Ht and K are monotonically increasing, (9) becomes

Y ∗k
it = hkt (w

∗
t )K(e−φiX∗

it),

with hkt (·) = ∂Ht(·)/∂w∗k
t . If, in particular, (8) has a constant scale elasticity µ for

all firms and years, then K(e−φiX∗
it) = e−φi/µ(X∗

it)
1/µ for all i, t and hence

Y ∗k
it = hkt (w

∗
t )e

−φi/µ(X∗
it)

1/µ.(10)

Taking logs, we can then write both (7) and (9) in simplified notation as

χit = c+ αi + γt + βξit,(11)
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where χit = lnY ∗
it , ξit = lnX∗

it, β = 1/µ, αi = −(1/µ)φi, γt is either zero, −(1/µ)ψt

or lnhkt (w
∗
t ), and c is a constant. The observed log-output and log-input are yit =

χit + uit and xit = ξit + vit, where uit and vit are measurement errors. This gives

an equation of the form (3). In the more general case where Ft represents a non-

homothetic technology, separability of Gt does not hold. Then the input elasticity

β will be different for different inputs and hence cannot be interpreted as an inverse

scale elasticity.

Neither of these model interpretations imposes a specific normalization on (11)

and (3), as observed input and output are both formally endogenous variables. In

the empirical application, two normalizations will be considered: (i) yit and xit

are, respectively, the log of an observed factor input and the log of observed gross

production, both measured as values at constant prices and β corresponds to 1/µ,

and (ii) yit and xit have the reverse interpretation and β corresponds to µ.

3 Estimators based on period means

In this section, we consider various estimators of β constructed from differenced

period means. From (3) we obtain

∆sȳ·t = ∆sx̄·tβ + ∆sε̄·t, s = 1, . . . , T−1; t = s+1, . . . , T,(12)

(ȳ·t − ȳ) = (x̄·t − x̄)β + (ε̄·t − ε̄), t = 1, . . . , T,(13)

where ȳ·t =
∑
i yit/N , ȳ =

∑
i

∑
t yit/(NT ), x̄·t =

∑
i xit/N , x̄ =

∑
i

∑
t xit/(NT ),

etc. and ∆s denotes differencing over s periods.

The (weak) law of the large numbers, when (A) is satisfied, implies under weak

conditions [cf. McCabe and Tremayne (1993, section 3.5)],4 that plim(ε̄·t) = 0,

plim(x̄·t − ξ̄·t) = 01K , so that plim[x̄ ′·tε̄·t] = 0K1 even if plim[(1/N)
∑N
i=1 x ′

itεit] 6=
0K1. From (12) and (13) we therefore get

plim[(∆sx̄·t) ′(∆sȳ·t)] = plim[(∆sx̄·t) ′(∆sx̄·t)]β,(14)

plim[(x̄·t−x̄) ′(ȳ·t−ȳ)] = plim[(x̄·t−x̄) ′(x̄·t−x̄)]β.(15)
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Hence, provided that E[(∆sξ̄·t)′(∆sξ̄·t)] and E[(ξ̄·t − ξ̄)′(ξ̄·t − ξ̄)] have rank K,

consistent estimators of β can be obtained by applying OLS on (12) or on (13),

which give, respectively,

β̂∆ s =

 T∑
t=s+1

(∆sx̄·t) ′ (∆sx̄·t)
−1 T∑

t=s+1
(∆sx̄·t) ′ (∆sȳ·t)

 , s = 1, . . . , T−1,(16)

β̂BP =
[
T∑
t=1

(x̄·t − x̄) ′(x̄·t − x̄)
]−1[ T∑

t=1
(x̄·t − x̄) ′(ȳ·t − ȳ)

]
.(17)

The latter is the ‘between period’ (BP) estimator. The consistency of these esti-

mators simply relies on the fact that averages of a large number of repeated mea-

surements of an error-ridden variable give, under weak conditions, an error-free

measure of the true average at the limit, provided that this average shows variation

along the remaining dimension, i.e., across periods. Basic to these conclusions is

the assumption that the measurement error has no period specific component. If

such a component is present, it will not vanish when taking plims of period means,

i.e., plim(v̄·t) will no longer be zero, (14) and (15) will no longer hold, and so β̂∆s

and β̂BP will be inconsistent.

Table 24.1 reports between period estimates of β based on levels (column 2)

and on differences (column 5) – the latter removing the effect of technical changes

represented by a log-linear trend – as well as seven-period difference estimates

(column 7) for the four sectors and the two inputs.5 SinceK = 1 in this application,

the estimators read

β̂BP =
∑
t(x̄·t − x̄)(ȳ·t − ȳ)∑

t(x̄·t − x̄)2 ,

β̂BPDC =
∑
t(∆x̄·t − ∆x̄)(∆ȳ·t − ∆ȳ)∑

t(∆x̄·t − ∆x̄)2 ,

β̂∆7 =
ȳ·8 − ȳ·1
x̄·8 − x̄·1

.

Rows 1 and 3 can be interpreted as estimates of 1/µ and rows 2 and 4 as estimates

of µ. This way of running original and reverse regressions in an EIV context can be

related to Frisch’s confluence analysis [Frisch (1934, sections 5, 10, 11, and 14)], in

which he proposed taking regressions in different directions, e.g., in the directions
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of the ‘x axis’ and of the ‘y axis’ as a device for handling measurement errors. He

did not, however, consider this method in a panel data context.

For materials, the between period (BP) estimates on levels for the original

and the reverse regression imply virtually the same input elasticity, 1/µ, in the

range 1.00 – 1.09 for the four sectors considered. They are also very close to

the estimates obtained from seven-period differences. The BP estimates based

on differences, β̂BPDC , show somewhat larger discrepancies. For capital, there are

substantial deviations between the level BP, the difference BP, and the seven-period

difference estimates. For the BP estimators on levels, the reverse regression gives

systematically higher estimates of the input elasticity of capital (lower estimates

of µ) than the original regressions. This may indicate that the measurement errors

in capital have period specific, or strongly serially correlated, components, which

make both the between period and all period difference estimators inconsistent.

For capital, unlike materials, the results also suggest the presence of period specific

heterogeneity in the relationship.

OLS estimates calculated from levels and from one period differences,

β̂OLS =
∑
i

∑
t(xit − x̄)(yit − ȳ)∑
i

∑
t(xit − x̄)2 ,

β̂OLSDC =
∑
i

∑
t(∆xit − ∆x̄)(∆yit − ∆ȳ)∑

i

∑
t(∆xit − ∆x̄)2 ,

β̂OLSD =
∑
i

∑
t(∆xit)(∆yit)∑
i

∑
t(∆xit)2 ,

are also reported (columns 1, 4, and 8), β̂OLSDC removing the possible effect of

linear trends. Columns 3 and 6 contain within firm (WF) estimates calculated from

levels and differences,

β̂WF =
∑
i

∑
t(xit − x̄i·)(yit − ȳi·)∑
i

∑
t(xit − x̄i·)2 ,

β̂WFDC =
∑
i

∑
t(∆xit − ∆x̄i·)(∆yit − ∆ȳi·)∑

i

∑
t(∆xit − ∆x̄i·)2 ,

β̂WFDC removing the possible effect of linear trends. These three OLS and the

two WF estimates, all of which are inconsistent in the presence of measurement
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errors, clearly illustrate the attenuation effect. They have, however, different degree

of robustness. While βOLS is neither robust to firm specific heterogeneity nor to

trend effects, βWF and βOLSD are robust to firm specific heterogeneity (which is

potentially correlated with the regressand or the regressor), but not robust to trend

effects, and βOLSDC and βWFDC are robust to both firm specific heterogeneity and

a linear trend. For materials, unlike capital, βOLSD, βOLSDC , and βWFDC give

fairly equal estimates in all sectors.

Although these examples show that it is possible to construct consistent esti-

mators, which give estimates of reasonable size (at least for materials), from period

means, their efficiency may be low, since they do not exploit any inter-individual

variation in the data, and the latter often tends to dominate. Therefore there is

a potential to improve the estimation by considering methods which utilizes this

inter-individual variation. One such method is the GMM.

4 The principle of GMM estimation

Before elaborating the GMM procedures for our panel data situation, we de-

scribe some generalities of this procedure, referring to, e.g, Davidson and MacKin-

non (1993, Chapter 17) and Harris and Mátyás (1999) for more detailed expositions.

Assume, in general, that we want to estimate the (K × 1) coefficient vector β in

the equation

y = xβ + ε,(18)

where y and ε are scalars and x is a (1×K) regressor vector. There exists an instru-

ment vector z, of dimension (1 × G), for x (G ≥ K), satisfying the orthogonality

conditions

E(z ′ε) = E[z ′(y − xβ)] = 0G,1.(19)

These conditions are assumed to be derived from the economic theory and the

statistical auxiliary hypotheses (e.g., about disturbance/error autocorrelation) un-

derlying our model. We have n observations on (y,x, z), denoted as (yj,xj, zj), j =
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1, . . . , n, and define the vector valued (G×1) function of corresponding means taken

over all available observations,

gn(y,x, z; β) = (1/n)
∑n
j=1 z ′

j(yj − xjβ).(20)

It may be considered the empirical counterpart to E[z ′(y − xβ)] based on the

sample. The essence of GMM is to choose as an estimator for β the value which

brings the value of gn(y,x, z; β) as close to its theoretical counterpart, the zero

vector 0G,1, as possible. IfG = K, an exact solution to the equation gn(y,x, z; β) =

0G,1 exists and is the simple IV estimator

β∗ = [
∑
j z ′

jxj]
−1[

∑
j z ′

jyj].(21)

If G > K, which is the most common situation, the GMM procedure solves the

estimation problem by minimizing a distance measure represented by a quadratic

form in gn(y,x, z; β) for a suitably chosen positive definit (G×G) weighting matrix

W n, i.e.,

β∗
GMM = β∗

GMM(W n) = argminβ[gn(y,x, z; β)′W ngn(y,x, z; β)].(22)

All estimators obtained in this way are consistent. The choice of W n determines

the efficiency of the method. A choice which leads to an asymptotically efficient

estimator of β, is to set this weighting matrix equal (or proportional) to the inverse

of (an estimate of) the (asymptotic) covariance matrix of (1/n)
∑n
j=1 z ′

jεj; see, e.g.,

Davidson and MacKinnon (1993, Theorem 17.3) and Harris and Mátyás (1999,

section 1.3.3).

If ε is serially uncorrelated and homoskedastic, with variance σ2
ε , the appropriate

choice is simply W n = [n−2σ2
ε

∑n
j=1 z ′

jzj]
−1. The resulting estimator obtained from

(22) is

β̂GMM = [(
∑
j x′

jzj)(
∑
j z′

jzj)
−1(

∑
j z′

jxj)]
−1[(

∑
j x′

jzj)(
∑
j z′

jzj)
−1(

∑
j z′

jyj)],(23)

which is the standard Two-Stage Least Squares (2SLS) estimator. The method can

also be fruitfully applied if εj has a heteroskedasticity of unspecified (or unknown)
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form. It can also take account of disturbance/error autocorrelation more or less

strictly specified, by reformulating the orthogonality conditions in an appropriate

way, as will be examplified below. This flexibility with respect to the imposition

of restrictions on the second order moments of disturbances/errors is one of the

primary virtues of GMM as compared with classical 2SLS. To operationalize the

latter method in the presence of unknown heteroskedasticity, we then first con-

struct consistent residuals ε̂j, usually from (23), which we consider as a first step

GMM estimator, and estimate W n by Ŵ n = [n−2 ∑
j z ′

j ε̂
2
jzj]

−1; see White (1984,

sections IV.3 and VI.2). Inserting this into (22) gives

β̃GMM = [(
∑
j x′

jzj)(
∑
j z′

j ε̂
2
jzj)

−1(
∑
j z′

jxj)]
−1(24)

× [(
∑
j x′

jzj)(
∑
j z′

j ε̂
2
jzj)

−1(
∑
j z′

jyj)].

The latter, second step GMM estimator, is in a sense an optimal GMM estimator

in the presence of unspecified error/disturbance heteroskedasticity. Both will be

considered in our empirical application below.

5 Simple GMM estimators

combining differences and levels
As explained in Section 4, the orthogonality conditions (OC’s) derived from eco-

nomic theory, (19), their empirical counterparts (20), and other restrictions im-

posed on second order moments of observed variables and errors and disturbances

play an essential rôle in GMM procedures. We have already made Assumption (A).

Before presenting the specific estimators for our panel data measurement error sit-

uation, we state the additional assumptions we will need.
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5.a Additional assumptions

Our additional assumptions with respect to the errors and disturbances are the

non-autocorrelation assumptions:

Assumption (B1): E(v ′
itviθ) = 0KK , t 6= θ,

Assumption (C1): E(uituiθ) = 0, t 6= θ.

Sometimes, the following weaker assumptions, allowing for some autocorrelation,

will be sufficient:

Assumption (B2): E(v ′
itviθ) = 0KK , |t− θ| > τ,

Assumption (B3): E(v ′
itviθ) is invariant to t, θ, t 6= θ,

Assumption (C2): E(uituiθ) = 0, |t− θ| > τ,

Assumption (C3): E(uituiθ) is invariant to t, θ, t 6= θ,

of which (B2) and (C2) allow for a (vector) moving average (MA) structure up to

order τ (≥ 1), and (B3) and (C3) allow for time invariance of the autocorrelation.

The latter will, for example, be satisfied if the measurement errors and the distur-

bances have individual components, say vit = v1i +v2it, uit = u1i +u2it, where v1i,

v2it, u1i, and u2it are independent IID processes.

Our additional assumptions with respect to the distribution of the latent regres-

sor vector ξit are:

Assumption (D1): E(ξit) is invariant to t,

Assumption (D2): E(αiξit) is invariant to t,

Assumption (E): rank(E[ξ ′
ip(∆ξitθ)]) = K for some p, t, θ different.

Assumptions (D1) and (D2) hold when ξit is mean stationary for all i. Assump-

tion (E) imposes non-IID and some form of autocorrelation or (covariance) non-

stationarity on ξit. It excludes, for example, the case where ξit has an individual

component, so that ξit = ξ1i + ξ2it, where ξ1i and ξ2it are independent (vector) IID

processes.

Assumptions (A) – (E) do not go very far in structuring the distributions of

the variables of the model. This has both its pros and cons. It may be possible
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to impose more structure on the first and second order moments of the uit’s, vit’s,

ξit’s, and αi’s – confer the ‘structural approach’ to EIV modelling. In this way we

might obtain more efficient estimators by operating on the full covariance matrix of

the yit’s and the xit’s, and possibly higher order moments, rather than eliminating

the αi’s by differencing, as elaborated below. Such estimators, however, may be

less robust to specification errors.

5.b Moment equations and orthogonality conditions

A substantial number of moment conditions involving second order moments in yit,

xit, and εit can be derived from Assumptions (A) – (E).

From (1) – (3) and Assumption (A) we obtain the following moment equations

involving observable variables in levels and differences:

E[x ′
ip(∆xitθ)] = E[ξ ′

ip(∆ξitθ)] + E[v ′
ip(∆vitθ)],(25)

E[x ′
ip(∆yitθ)] = E[ξ ′

ip(∆ξitθ)]β,(26)

E[(∆xipq)
′yit] = E[(∆ξipq)

′ξit]β + E[(∆ξipq)
′(αi + c)](27)

and involving observable variables and errors/disturbances:

E[x ′
ip(∆εitθ)] = − E[v ′

ip(∆vitθ)]β,(28)

E[yip(∆εitθ)] = E[uip(∆uitθ)],(29)

E[(∆xipq) ′εit] = E[(∆ξipq)
′αi] − E[(∆vipq) ′vit]β,(30)

E[(∆yipq)εit] = β ′E[(∆ξipq)
′αi] + E[(∆uipq)uit], t, θ, p, q = 1, . . . , T.(31)

The moments on the left hand side of (25) – (27) are structured by Assumptions

(D) and (E). The moments at the left hand side of (28) – (31) are structured by

Assumptions (B) – (D). Depending on which assumptions are valid, some of the

terms on the right hand side of (28) – (31), or all, vanish. Provided that T > 2,

(3), (5), and (28) – (31) imply
When either (B1) holds and t, θ, p are different,
or (B2) holds and |t− p|, |θ − p| > τ , then

E[x ′
ip(∆εitθ)] = E[x ′

ip(∆yitθ)] − E[x ′
ip(∆xitθ)]β = 0K1.

(32)
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
When either (C1) holds and t, θ, p are different,
or (C2) holds and |t− p|, |θ − p| > τ , then

E[yip(∆εitθ)] = E[yip(∆yitθ)] − E[yip(∆xitθ)]β = 0.

(33)


When either (B1), (D1), and (D2) hold and t, p, q are different,
or (B2), (D1), and (D2) hold and |t− p|, |t− q| > τ , then

E[(∆xipq)
′εit] = E[(∆xipq)

′yit] − E[(∆xipq)
′xit]β = 0K1.

(34)


When either (C1), (D1), and (D2) hold and t, p, q are different,
or (C2), (D1), and (D2) hold and |t− p|, |t− q| > τ , then

E[(∆yipq)εit] = E[(∆yipq)yit] − E[(∆yipq)xit]β = 0.

(35)

The intercept c needs a comment. When mean stationarity of the latent regres-

sor, (D1), holds, then E(∆xipq) = 01K and E(∆yipq) = 0. If we relax (D1), which

cannot be assumed to hold in many situations due to non-stationarity, we get

E[(∆xipq)
′εit] = E[(∆xipq)

′yit] − E[(∆xipq)
′]c− E[(∆xipq)

′xit]β = 0K1,

E[(∆yipq)εit] = E[(∆yipq)yit] − E[(∆yipq)]c− E[(∆yipq)xit]β = 0.

Eliminating c by means of E(εit) = E(yit) − c− E(xit)β = 0 leads to the following

modifications of (34) and (35):
When either (B1) and (D2) hold and t, p, q are different,
or (B2) and (D2) hold and |t−p|, |t−q| > τ , then

E[(∆xipq)
′εit] = E[(∆xipq)

′(yit−E(yit))]−E[(∆xipq)
′(xit−E(xit))]β = 0K1.

(36)


When either (C1) and (D2) hold and t, p, q are different,
or (C2) and (D2) hold and |t−p|, |t−q| > τ , then

E[(∆yipq)εit] = E[(∆yipq)(yit−E(yit))]−E[(∆yipq)(xit−E(xit))]β = 0.

(37)

The OC’s (32) – (37), corresponding to (19) in the general exposition of the

GMM, will be instrumental in constructing our GMM estimators. Not all of these

OC’s, whose number is substantial even for small T , are, of course, independent.

Let us examine the relationships between the OC’s in (32) – (33) and between

the OC’s in (34) – (35). Some of these conditions are redundant, i.e., linearly
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dependent of other conditions. Confining attention to the OC’s relating to the x’s,

we have6

(α) Assume that (B1) and (C1) are satisfied. Then: (i) All OC’s (32) are linearly

dependent on all admissible OC’s relating to equations differenced over one

period and a subset of the OC’s relating to two-period differences. (ii) All

OC’s (34) are linearly dependent on all admissible OC’s relating to IV’s dif-

ferenced over one period and a subset of the IV’s differenced over two periods.

(β) Assume that (B2) and (C2) are satisfied. Then: (i) All OC’s (33) are linearly

dependent on all admissible OC’s relating to equations differenced over one

period and a subset of the OC’s relating to differences over 2(τ+1) periods.

(ii) All OC’s (35) are linearly dependent on all admissible OC’s relating to

IV’s differenced over one period and a subset of the IV’s differenced over

2(τ+1) periods.

We denote the non-redundant conditions defined by (α) – (β) as essential OC’s.

The following propositions are shown in Biørn (2000, section 2.d):

Proposition 1: Assume that (B1) and (C1) are satisfied. Then

(a) E[x ′
ip(∆εit,t−1)] = 0K,1 for p = 1, . . . , t−2, t+1, . . . , T ; t = 2, . . . , T are

K(T−1)(T−2) essential OC’s for equations differenced over one period.

(b) E[x ′
it(∆εit+1,t−1)] = 0K,1 for t = 2, . . . , T−1 are K(T−2) essential OC’s for

equations differenced over two periods.

(c) The other OC’s are redundant: among the 1
2KT (T−1)(T−2) conditions in

(32) when T > 2, only KT (T−2) are essential.

Proposition 2: Assume that (B1) and (C1) are satisfied. Then

(a) E[(∆xip,p−1)
′εit] = 0K,1 for t = 1, . . . , p−2, p+1, . . . , T ; p = 2, . . . , T are

K(T−1)(T−2) essential OC’s for equations in levels, with IV’s differenced

over one period.
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(b) E[(∆xit+1,t−1)
′εit] = 0K,1 for t = 2, . . . , T−1 are K(T−2) essential OC’s for

equations in levels, with IV’s differenced over two periods.

(c) The other OC’s are redundant: among the 1
2KT (T−1)(T−2) conditions in

(33) when T > 2, only KT (T−2) are essential.

For generalizations to the case where εit is a MA(τ) process, see Biørn (2000,

section 2.d). These propositions can be (trivially) modified to include also the

essential and redundant OC’s in the y’s or the ∆y’s, given in (33) and (35).

5.c The estimators

We are now in a position to specialize (23) and (24) to define (i) consistent GMM

estimators of β in (5) for one pair of periods (t, θ), utilizing as IV’s for ∆xitθ

all admissible xip’s, and (ii) consistent GMM estimators of β in (3), i.e., for one

period (t), utilizing as IV’s for xit all admissible ∆xipq’s. This is a preliminary to

Section 6, in which we combine on the one hand (i) the differenced equations for

all pairs of periods, and on the other hand (ii) the level equations for all periods,

respectively, in one equation system.

We let P tθ denote the ((T−2) × T ) selection matrix obtained by deleting from

IT rows t and θ, and introduce the [(T−2) × T ] matrix

Dt =



d21
...

dt−1,t−2

dt+1,t−1

dt+2,t+1
...

dT,T−1


, t = 1, . . . , T,

which is a one-period differencing matrix, except that dt,t−1 and dt+1,t are re-

placed by their sum, dt+1,t−1, the two-period difference being effective only for

t = 2, . . . , T − 1, and use the notation

yi(tθ) = P tθyi·, X i(tθ) = P tθX i·, xi(tθ) = vec(X i(tθ)) ′,

∆yi(t) = Dtyi·, ∆X i(t) = DtX i·, ∆xi(t) = vec(∆X i(t)) ′,
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etc. Here X i(tθ) denotes the [(T − 2) ×K] matrix of x levels obtained by deleting

rows t and θ from X i·, and ∆X i(t) denotes the [(T−2)×K] matrix of x differences

obtained by stacking all one-period differences between rows of X i· not including

period t and the single two-period difference between the columns for periods t+ 1

and t− 1. The vectors yi(tθ) and ∆yi(t) are constructed from yi· in a similar way.

In general, we let subscripts (tθ) and (t) on a matrix or vector denote deletion of

(tθ) differences and t levels, respectively. Stacking y ′
i(tθ), ∆y ′

i(t), xi(tθ), and ∆xi(t)

by individuals, we get

Y (tθ) =


y′

1(tθ)
...

y′
N(tθ)

 ,∆Y (t) =


∆y′

1(t)
...

∆y′
N(t)

 ,X(tθ) =


x1(tθ)

...

xN(tθ)

 ,∆X(t) =


∆x1(t)

...

∆xN(t)

 ,

which have dimensions (N × (T − 2)), (N × (T − 2)), (N × (T − 2)K), and (N ×
(T − 2)K), respectively. These four matrices contain the alternative IV sets in the

GMM procedures to be considered below.

Equation in differences, IV’s in levels. Using X(tθ) as IV matrix for ∆X tθ, we

obtain the following estimator of β, specific to period (t, θ) differences and utilizing

all admissible x level IV’s,

β̂Dx(tθ) =
[
(∆X tθ)

′X(tθ)

(
X ′

(tθ)X(tθ)

)−1
X ′

(tθ)(∆X tθ)
]−1

(38)

×
[
(∆X tθ)

′X(tθ)

(
X ′

(tθ)X(tθ)

)−1
X ′

(tθ)(∆ytθ)
]

=
[[∑

i(∆xitθ)
′xi(tθ)

][∑
i x

′
i(tθ)xi(tθ)

]−1[∑
i x

′
i(tθ)(∆xitθ)

]]−1

×
[[∑

i(∆xitθ)
′xi(tθ)

][∑
i x

′
i(tθ)xi(tθ)

]−1[∑
i x

′
i(tθ)(∆yitθ)

]]
.

It exists if X ′
(tθ)X(tθ) has rank (T −2)K, which requires N ≥ (T −2)K. This

estimator examplifies (23), utilizes the OC E[x ′
i(tθ)(∆εitθ)] = 0(T−2)K,1 – which

follows from (32) – and minimizes the quadratic form

[N−1X ′
(tθ)∆εtθ]

′[N−2X ′
(tθ)X(tθ)]

−1[N−1X ′
(tθ)∆εtθ].
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The weight matrix (N−2X ′
(tθ)X(tθ))

−1 is proportional to the inverse of the (asymp-

totic) covariance matrix of N−1X ′
(tθ)∆εtθ when ∆εitθ is IID across i. The consis-

tency of β̂Dx(tθ) relies on Assumptions (A), (B1), and (E).

Two modifications of β̂Dx(tθ) exist: First, if var(∆εitθ) varies with i, we can

increase the efficiency of (38) by replacing x ′
i(tθ)xi(tθ) by x ′

i(tθ)(∆̂εitθ)
2xi(tθ), which

gives an asymptotically optimal GMM estimator of the form (24). Second, instead

of using X(tθ) as IV matrix for ∆X tθ, we may either, if K = 1, use Y (tθ), or, for

arbitrary K, (X(tθ) : Y (tθ)), provided that also (C1) is satisfied.

Equation in levels, IV’s in differences. Using ∆X(t) as IV matrix for X t

(for notational simplicity we omit the ‘dot’ subscript on X·t and y·t), we get

the following estimator of β, specific to period t levels, utilizing all admissible x

difference IV’s,

β̂Lx(t) =
[
X ′

t(∆X(t))
(
(∆X(t))

′(∆X(t))
)−1

(∆X(t))
′X t

]−1
(39)

×
[
X ′

t(∆X(t))
(
(∆X(t))

′(∆X(t))
)−1

(∆X(t))
′yt

]
=

[[∑
i x

′
it(∆xi(t))

][∑
i(∆xi(t))

′(∆xi(t))
]−1[∑

i(∆xi(t))
′xit

]]−1

×
[[∑

i x
′
it(∆xi(t))

][∑
i(∆xi(t))

′(∆xi(t))
]−1[∑

i(∆xi(t))
′yit

]]
.

It exists if (∆X(t))
′(∆X(t)) has rank (T −2)K, which requires N ≥ (T −2)K.

This estimator examplifies (23), utilizes the OC E[(∆xi(t))
′εit] = 0(T−2)K,1 – which

follows from (34) – and minimizes the quadratic form

[N−1(∆X(t))
′εt]

′[N−2(∆X(t))
′(∆X(t))]

−1[N−1(∆X(t))
′εt].

The weight matrix [N−2(∆X(t))
′(∆X(t))]

−1 is proportional to the inverse of the

(asymptotic) covariance matrix of N−1(∆X(t))
′εt when εit is IID across i. The

consistency of β̂Lx(t) relies on Assumptions (A), (B1), (D1), (D2), and (E).

Three modifications of β̂Lx(t) exist: First, if var(εit) varies with i, we can increase

the efficiency of (39) by replacing (∆xi(t))
′(∆xi(t)) by (∆xi(t))

′(ε̂it)2(∆xi(t)), which

gives an asymptotically optimal GMM estimator of the form (24). Second, instead
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of using ∆X(t) as IV matrix for X t, we may either, if K = 1, use ∆Y (t), or, for

arbitrary K, (∆X(t) : ∆Y (t)), provided that also (C1) is satisfied. Third, we can

deduct period means from xit and yit and relax the stationarity in mean assumption

of the latent regressor, (D1); cf. (36) – (37).

If we relax Assumptions (B1) or (C1) and replace them by (B2) or (C2), we

must reconstruct the OC’s underlying (38) and (39) to ensure that the variables

in the IV matrix have a lead or lag of at least τ + 1 periods to the regressor, to

‘get clear of’ the τ period memory of the MA(τ) process. The IV sets will then be

reduced.

6 Composite GMM estimators

combining differences and levels
We now take the single equation GMM estimators (38) and (39) and their het-

eroskedasticity robust modifications one step further and construct GMM estima-

tors of the common coefficient vector β when we combine the essential OC’s for

all periods, i.e., for all differences or for all levels. This gives multi-equation, or

overall, GMM estimators for panel data with measurement errors, still belonging

to the general framework described in Section 4. The procedures to be described

in this section, like the single-equation procedures in section 5.c, may be modified

to be applicable to situations with disturbance/error autocorrelation.

Equation in differences, IV’s in levels. Consider the differenced equation (5)

for all θ = t − 1 and θ = t − 2. These (T −1) + (T −2) equations stacked for

individual i read

∆yi21...
∆yi,T,T−1

∆yi31...
∆yi,T,T−2


=



∆xi21...
∆xi,T,T−1

∆xi31...
∆xi,T,T−2


β +



∆εi21...
∆εi,T,T−1

∆εi31...
∆εi,T,T−2


,(40)
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or, compactly,

∆yi = (∆X i)β + ∆εi.

The IV matrix (cf. Proposition 1) is the ((2T − 3) ×KT (T − 2)) matrix

Zi =



xi(21) · · · 0 0 · · · 0
... . . . ...

...
...

...
0 · · · xi(T,T−1) 0 · · · 0
0 · · · 0 xi2 · · · 0
...

...
...

... . . . ...
0 · · · 0 0 · · · xi,T−1


.(41)

We here use different IV’s for the (T − 1) + (T − 2) equations in (40), with β as a

common slope coefficient. Let

∆y = [(∆y1) ′, . . . , (∆yN) ′] ′, ∆ε = [(∆ε1) ′, . . . , (∆εN) ′] ′,

∆X = [(∆X1) ′, . . . , (∆XN) ′] ′, Z = [Z ′
1, . . . ,Z

′
N ] ′.

The overall GMM estimator corresponding to (32), which we now write as

E[Z ′
i(∆εi)] = 0T (T−2)K,1, minimizing [N−1(∆ε) ′Z](N−2V )−1[N−1Z ′(∆ε)] for V =

Z ′Z, can be written as

β̂Dx = [(∆X) ′Z(Z ′Z)−1Z ′(∆X)]−1[(∆X) ′Z(Z ′Z)−1Z ′(∆y)](42)

=
[
[
∑
i(∆X i)

′Zi] [
∑
i Z

′
iZi]

−1 [
∑
i Z

′
i(∆X i)]

]−1

×
[
[
∑
i(∆X i)

′Zi] [
∑
i Z

′
iZi]

−1 [
∑
i Z

′
i(∆yi)]

]
.

This estimator examplifies (23). The consistency of βDx relies on Assumptions

(A), (B1), and (E). If ∆ε has a non-scalar covariance matrix, a more efficient

estimator is obtained for V = V Z(∆ε) = E[Z ′(∆ε)(∆ε)′Z], which gives

β̃Dx =
[
(∆X) ′ZV −1

Z(∆ε)Z
′(∆X)

]−1 [
(∆X) ′ZV −1

Z(∆ε)Z
′(∆y)

]
.

We can estimate V Z(∆ε)/N consistently from the residuals obtained from (42),

∆̂εi = ∆yi − (∆X i)β̂Dx, by V̂ Z(∆ε)/N = (1/N)
∑N
i=1 Z ′

i(∆̂εi)(∆̂εi)
′Zi. The re-

sulting asymptotically optimal GMM estimator, which examplifies (24), is

β̃Dx =
[
[
∑
i(∆X i)

′Zi][
∑
i Z

′
i∆̂εi∆̂ε

′
iZi]

−1[
∑
i Z

′
i(∆X i)]

]−1
(43)

×
[
[
∑
i(∆X i)

′Zi][
∑
i Z

′
i∆̂εi∆̂ε

′
iZi]

−1[
∑
i Z

′
i(∆yi)]

]
.
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The estimators β̂Dx and β̃Dx can be modified by extending xi(t,t−1) to (xi(t,t−1) :

y ′
i(t,t−1)) and xit to (xit : yit) in (41), also exploiting Assumption (C1) and the

OC’s in the y’s. This is indicated be replacing subscript Dx by Dy or Dxy on the

estimator symbols.

Table 24.2 contains, for the four manufacturing sectors and the two inputs, the

overall GMM estimates obtained from the complete set of differenced equations.

The standard deviation estimates are computed as described in the Appendix.7 The

estimated input-output elasticities (column 1, rows 1 and 3) are always lower than

the inverse output-input elasticities (column 2, rows 2 and 4). This ‘attenuation

effect’, also found for the OLS estimates (cf. Table 24.1), agrees with the fact

that β̂Dx and β̂Dy can be interpreted as obtained by running standard 2SLS on

the ‘original’ and on the ‘reverse regression’ version of (40), respectively. Under

both normalizations, the estimates utilizing the y instruments (column 2) tend to

exceed those based on the x instruments (column 1). Using the optimal weighting

(columns 4 and 5), we find that the estimates are more precise, according to the

standard deviation estimates, than those in columns 1 and 2, as they should be. The

standard deviation estimates for capital are substantially higher than for materials.

Sargan-Hansen orthogonality test statistics, which are asymptotically distributed

as χ2 with a number of degrees of freedom equal to the number of OC’s imposed

less the number of coefficients estimated (one in this case) under the null hypothesis

of orthogonality [cf. Hansen (1982), Newey (1985), and Arellano and Bond (1991)],

corresponding to the asymptotically efficient estimates in columns 4 and 5, are re-

ported in columns 6 and 7. For materials, these statistics indicate non-rejection of

the full set of OC’s when using the x’s as IV’s for the original regression (rows 1)

and the y’s as IV’s for the reverse regression (rows 2) – i.e., the output variable

in both cases – with p values exceeding 5%. The OC’s when using the y’s as IV’s

for the original regression and the x’s as IV’s for the reverse regression – i.e., the

material input variable in both cases – is however rejected. For capital the tests

come out with very low p values in all cases, indicating rejection of the OC’s. This
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may be due to lagged response, autocorrelated measurement errors or disturbances

and/or (deterministic or stochastic) trends in the capital input relationship. The

latter would violate, for example, the stationarity assumption for capital. Owing to

the short time span of our data, we have not, however, performed a cointegration

analysis.

All the results in Table 24.2 uniformly indicate a marginal input elasticity of

materials, 1/µ, larger than one; β̂Dx and β̃Dx are, however, lower than the (in-

consistent) estimate obtained by running OLS regression on differences (cf. β̂OLSD

for the materials-output regression in Table 24.1), and β̂Dy and β̃Dy are higher

than the (inconsistent) estimate obtained by running reverse OLS regression on

differences (cf. β̂OLSD for the output-materials regression in Table 24.1).

Equation in levels, IV’s in differences. We next consider the procedures for

estimating all the level equations (3) with the IV’s in differences. The T stacked

level equations for individual i are yi1...
yiT

 =

 c
...
c

 +

 xi1...
xiT

 β +

 εi1...
εiT

 ,(44)

or compactly, omitting the ‘dot’ subscript [cf. (4)],

yi = eT c+ X iβ + εi.

The IV matrix (cf. Proposition 2) is the (T × T (T − 2)K) matrix

∆Zi =

 ∆xi(1) · · · 0
... . . . ...
0 · · · ∆xi(T )

 .(45)

Again, we use different IV’s for different equations, considering (44) as T equations

with β as a common slope coefficient. Let

y = [y ′
1, . . . ,y

′
N ] ′, ε = [ε ′

1, . . . , ε
′
N ] ′,

X = [X ′
1, . . . ,X

′
N ] ′, ∆Z = [(∆Z1) ′, . . . , (∆ZN) ′] ′.
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The overall GMM estimator corresponding to (34), which we now write as

E[(∆Zi)
′εi] = 0T (T−2)K,1, minimizing [N−1ε ′(∆Z)](N−2V ∆)−1[N−1(∆Z) ′ε] for

V ∆ = (∆Z) ′(∆Z), can be written as

β̂Lx = [X ′(∆Z)[(∆Z) ′(∆Z)]−1(∆Z) ′X]−1[X ′(∆Z)[(∆Z) ′(∆Z)]−1(∆Z) ′y](46)

=
[
[
∑
i X

′
i(∆Zi)] [

∑
i(∆Zi) ′(∆Zi)]

−1 [
∑
i(∆Zi) ′X i]

]−1

×
[
[
∑
i X

′
i(∆Zi)] [

∑
i(∆Zi) ′(∆Zi)]

−1 [
∑
i(∆Zi) ′yi]

]
.

This estimator examplifies (23). The consistency of βLx relies on Assumptions

(A), (B1), (D1), (D2), and (E). If ε has a non-scalar covariance matrix, a more

efficient estimator is obtained for V ∆ = V (∆Z)ε = E[(∆Z)′εε′(∆Z)], which gives

β̃Lx =
[
X ′(∆Z)V −1

(∆Z)ε(∆Z) ′X
]−1 [

X ′(∆Z)V −1
(∆Z)ε(∆Z) ′y

]
.

We can estimate V (∆Z)ε/N consistently from the residuals obtained from (46) ε̂i =

yi − X iβ̂Lx, by V̂ (∆Z)ε/N = (1/N)
∑N
i=1(∆Zi)

′ ε̂iε̂
′
i(∆Zi). We can here omit the

intercept c; see Section 5.b. The resulting asymptotically optimal GMM estimator,

which examplifies (24), is

β̃Lx =
[
[
∑
i X

′
i(∆Zi)] [

∑
i(∆Zi) ′ ε̂iε̂

′
i(∆Zi)]

−1 [
∑
i(∆Zi) ′X i]

]−1
(47)

×
[
[
∑
i X

′
i(∆Zi)] [

∑
i(∆Zi) ′ ε̂iε̂

′
i(∆Zi)]

−1 [
∑
i(∆Zi) ′yi]

]
.

The estimators β̂Lx and β̃Lx can be modified by extending ∆xi(t) to (∆xi(t) : ∆y ′
i(t))

in (45), also exploiting Assumption (C1) and the OC’s in the ∆y’s. This is indicated

be replacing subscript Lx by Ly or Lxy on the estimator symbols. We can also

deduct period means from the level variables in (44) to take account of possible

non-stationarity of these variables and relax (D1) [cf. (36) – (37)].

Tables 24.3 and 24.4 contain the overall GMM estimates obtained from the

complete set of level equations, the first using the untransformed observations and

the second based on observations measured from their year means. The orthog-

onality test statistics (columns 6 and 7) give for materials conclusions similar to

those for the differenced equation in Table 24.2 for Textiles and Chemicals (which
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have the fewer observations): Non-rejection of the OC’s when using the x’s as IV’s

(cf. χ2(β̃Lx) in rows 1) and the y’s as IV’s (cf. χ2(β̃Ly) in rows 2) – i.e., the output

variable in both cases – and rejection when using the y’s as IV’s in the materials-

output regression and the x’s as IV’s in the output-materials regression – i.e., the

material input variable in both cases. For capital, the orthogonality test statistics

once again come out with very low p values in all cases, which may again reflect

mis-specified dynamics or trend effects. There is, however, a striking difference

between Tables 24.3 and 24.4. In Table 24.3 – in which we make no adjustment

for non-stationarity in means and impose (D1) – we find uniform rejection of the

OC’s for capital in all sectors and for Wood Products and Paper Products for ma-

terials. In Table 24.4 – in which we make adjustment for non-stationarity in means

by deducting period means from the level variables and relax (D1) – we find non-

rejection when using output as instrument for all sectors for materials (p values

exceeding 5%), and for capital in all sectors except Textiles and Wood Products (p

values exceeding 1%). Note that the set of orthogonality conditions under test in

Tables 24.3 and 24.4 is larger than in Table 24.2, since it also includes Assumption

(D2), time invariance of the covariance between the firm specific effect αi and the

latent regressor ξit.

These estimates for the level equation, unlike those for the differenced equation

in Table 24.2, however, do not uniformly give marginal input elasticity estimates

of materials greater than one. Using level observations measured from year means

(Table 24.4) and relaxing mean stationarity of the latent regressor, we get esti-

mates exceeding one, while using untransformed observations and imposing mean

stationarity, we get estimates less than one. There are also substantial differences

for capital.

A tentative conclusion we can draw from the examples in Tables 24.2 – 24.4

is that overall GMM estimates of the input elasticity of materials with respect

to output tend to be larger than one if we use either the equation in differences

with IV’s in levels or the equation in levels, measuring the observations from their
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year means, with IV’s in differences. If we use the non-adjusted equation in levels

with IV’s in differences, the GMM estimates tend to be less than one. For capital,

the picture is less clear. Overall, there is a considerable difference between the

elasticity estimates of materials and those of capital. An interpretation we may give

of this difference is that the underlying production technology is non-homothetic;

cf. Section 2.

7 Concluding remarks

In this paper, we have constructed and illustrated several estimators which may

handle jointly the heterogeneity problem and the measurement error problem in

panel data. These problems may be untractable when only pure (single or repeated)

cross section data or pure time series data are available. The estimators considered

are estimators operating on period specific means, inter alia, the between period

(BP) estimator, and Generalized Method of Moments (GMM) estimators. The

GMM estimators use either equations in differences with level values as instruments,

or equations in levels with differenced values as instruments. In both cases, the

differences may be taken over one period or more.

In GMM estimation, not only instruments constructed from the observed re-

gressors (x’s), but also instruments constructed from the observed regressands (y’s)

may be useful, even if both are, formally, endogenous variables. Our empirical ex-

amples – using materials and capital input data and output data for firms in a

single regressor case – indicate that for both normalizations of the equation, GMM

estimates using y instruments tend to exceed those using x instruments. Even if

the GMM estimates, unlike the OLS estimates, are consistent, they seem to some

extent to be affected by the ‘attenuation’ known for the OLS in errors-in-variables

situations. Using levels as instruments for differences or vice versa as a general es-

timation strategy within a GMM framework, however, may raise problems related

to ‘weak instruments’; cf. Nelson and Startz (1990) and Staiger and Stock (1997).

It is left for future research to explore these problems, e.g., by means of Monte
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Carlo experiments.

The between period (BP) estimates on levels for the original and the reverse

regression give virtually the same input elasticity for materials. For capital, we find

substantial deviations between the two sets of BP estimators, which may indicate

that measurement errors or disturbances have period specific, or strongly serially

correlated, components.

Finally, we find that GMM estimates based on the equation in levels are more

precise than those based on the equation in differences. Deducting period means

from levels to compensate for non-stationarity of the latent regressor, give estimates

for the level equation which are less precise and more sensitive to the choice of in-

strument set than those operating on untransformed levels. On the other hand, this

kind of transformations of level variables may be needed to compensate for period

effects, mis-specified dynamics, or non-stationarity of the variables, in particular

for the capital input variable. It should come as no surprise that the adjustment

of material input is far easier to model within the framework considered than is

capital.
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Notes
1Identification under non-normality of the true regressor is, however, possible by utilizing

moments of the distribution of the observable variables of order higher than the second [see

Reiersøl (1950)]. Even under non-identification, bounds on the parameters can be established

from the distribution of the observable variables [see Fuller (1987, p. 11)]. These bounds may

be wide or narrow, depending on the covariance structure of the variables; see, e.g., Klepper and

Leamer (1984) and Bekker et al. (1987).
2The last two assumptions are stronger than strictly needed; time invariance of E(αivit) and

E(αiuit) is sufficient. A modification to this effect will be of minor practical importance, however.
3Premultiplication of (4) by dtθ is not the only way of eliminating αi. Any (1 × T ) vector

ctθ such that ctθeT = 0, for example the rows of the within individual transformation matrix

IT − eT e ′
T /T , where IT is the T dimensional identity matrix, has this property.

4Here and in the following plim always denotes probability limits when N goes to infinity and

T is finite.
5We report no standard error estimates in Table 24.1, since some of the methods are inconsis-

tent.
6The OC’s involving y’s can be treated similarly. Essential and redundant moment conditions

in the context of AR models for panel data are discussed in, inter alia, Ahn and Schmidt (1995),

Arellano and Bover (1995), and Blundell and Bond (2000). This problem resembles, in some

respects, the problem for static measurement error models discussed here.
7All numerical calculations are performed by means of procedures constructed by the author

in the GAUSS software code.
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Appendix

In this appendix, we elaborate the procedures for estimating asymptotic covariance

matrices of the GMM estimators. All models in the main text, with suitable

interpretations of y, X, Z, ε, and Ω, have the form:

y = Xβ + ε, E(ε) = 0, E(Z ′ε) = 0, E(εε ′) = Ω,(A.1)

where y = (y′
1, . . . ,y

′
N)′, X = (X ′

1, . . . ,X
′
N)′, Z = (Z ′

1, . . . ,Z
′
N)′, and ε =

(ε′
1, . . . , ε

′
N)′, Zi being the IV matrix of X i. The two generic GMM estimators

considered are

β̂ = [X ′P ZX]−1[X ′P Zy], P Z = Z(Z ′Z)−1Z ′,(A.2)

β̃ = [X ′P Z(Ω)X]−1[X ′P Z(Ω)y], P Z(Ω) = Z(Z ′ΩZ)−1Z ′.(A.3)

Let the residual vector calculated from β̂ be ε̂ = y −Xβ̂, and use the notation

SXZ =
X ′Z
N

, SZX =
Z ′X
N

, SZZ =
Z ′Z
N

, SεZ =
ε ′Z
N

, SZε =
Z ′ε
N

,

S
ZΩZ

=
Z ′ΩZ

N
, SZεεZ =

Z ′εε ′Z
N

, S
Zε̂ε̂Z =

Z ′ε̂ε̂ ′Z
N

.

Inserting for y from (A.1) in (A.2) and (A.3), we get

√
N(β̂−β) =

√
N [X ′P ZX]−1[X ′P Zε] = [SXZS−1

ZZSZX ]−1

[
SXZS−1

ZZ

Z ′ε√
N

]
,

√
N(β̃−β) =

√
N [X ′P Z(Ω)X]−1[X ′P Z(Ω)ε] = [SXZS−1

ZΩZSZX ]−1

[
SXZS−1

ZΩZ
Z ′ε√
N

]
,

and hence,

N(β̂ − β)(β̂ − β) ′ = [SXZS−1
ZZSZX ]−1[SXZS−1

ZZSZεεZS−1
ZZSZX ][SXZS−1

ZZSZX ]−1,

N(β̃ − β)(β̃ − β) ′ = [SXZS−1
ZΩZSZX ]−1[SXZS−1

ZΩZSZεεZS−1
ZΩZSZX ][SXZS−1

ZΩZSZX ]−1.

The asymptotic covariance matrices of
√
N β̂ and

√
N β̃ can then, under suitable

regularity conditions, be written as [see Bowden and Turkington (1984, pp. 26, 69)]

aV(
√
N β̂) = lim E[N(β̂ − β)(β̂ − β) ′] = plim[N(β̂ − β)(β̂ − β) ′],

aV(
√
N β̃) = lim E[N(β̃ − β)(β̃ − β) ′] = plim[N(β̃ − β)(β̃ − β) ′].
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Since SZεεZ and SZΩZ coincide asymptotically, we get, using bars to denote plims,

aV(
√
N β̂) = [S̄XZS̄

−1
ZZS̄ZX ]−1[S̄XZS̄

−1
ZZS̄ZΩZS̄

−1
ZZS̄ZX ][S̄XZS̄

−1
ZZS̄ZX ]−1,(A.4)

aV(
√
N β̃) = [S̄XZS̄

−1
ZΩZS̄ZX ]−1.(A.5)

Replacing the plims S̄XZ , S̄ZX , S̄ZZ and S̄ZΩZ by their sample counterparts,

SXZ , SZX , SZZ and SZε̂ε̂Z and dividing by N , we get from (A.4) and (A.5) the

following estimators of the asymptotic covariance matrices of β̂ and β̃:

V̂(β̂) =
1
N

[SXZS−1
ZZSZX ]−1[SXZS−1

ZZSZε̂ε̂ZS−1
ZZSZX ][SXZS−1

ZZSZX ]−1(A.6)

= [X ′P ZX]−1[X ′P Z ε̂ε̂ ′P ZX][X ′P ZX]−1,

V̂(β̃) =
1
N

[SXZS−1
Zε̂ε̂ZSZX ]−1(A.7)

= [X ′Z(Z ′ε̂ε̂ ′Z)−1Z ′X]−1 = [X ′P Z(ε̂ε̂ ′)X]−1.

These are the generic expressions which we use for estimating variances and co-

variances of the GMM estimators considered.

When calculating β̃ from (A.3) in practice, we replace P Z(Ω) by P Z(ε̂ε̂ ′) =

Z(Z ′ε̂ε̂ ′Z)−1Z ′ [see White (1982, 1984)].
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Mátyás and P. Sevestre. Dordrecht: Kluwer.

Biørn, E. (2000): Panel Data with Measurement Errors. Instrumental Variables

and GMM Estimators Combining Levels and Differences. Econometric Reviews,

19, 391-424.

Biørn, E., and Klette, T.J. (1998): Panel Data with Errors-in-Variables: Essen-

tial and Redundant Orthogonality Conditions in GMM-Estimation. Economics

Letters, 59, 275-282.

31



Biørn, E., and Klette, T.J. (1999): The Labour Input Response to Permanent

Changes in Output: An Errors in Variables Analysis Based on Panel Data.

Scandinavian Journal of Economics, 101, 379-404.

Blundell, R., and Bond, S. (1998): Initial Conditions and Moment Restrictions in

Dynamic Panel Data Models. Journal of Econometrics, 87, 115-143.

Bowden, R.J., and Turkington, D.A. (1984): Instrumental Variables. Cambridge:

Cambridge University Press.

Davidson, R., and MacKinnon, J.G. (1993): Estimation and Inference in Econo-

metrics. Oxford: Oxford University Press.

Frisch, R. (1934): Statistical Confluence Analysis by Means of Complete Regression

Systems. Oslo: Universitetets Økonomiske Institutt.

Fuller, W.A. (1987): Measurement Error Models. New York: Wiley.

Griliches, Z., and Hausman, J.A. (1986): Errors in Variables in Panel Data. Jour-

nal of Econometrics, 31, 93-118.

Hansen, L.P. (1982): Large Sample Properties of Generalized Method of Moments

Estimators. Econometrica, 50, 1029-1054.
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Table 24.1:

Input elasticities and inverse input elasticities.

Standard OLS, Between Period, and Within Firm estimates

Q = output, M = materials, K = capital

Cols. 1 – 3: Equation in levels.

Cols. 4 – 6: Equation in differences, with intercept.

Cols. 7 – 8: Equation in differences, without intercept

Textiles: N = 215, T = 8

y, x β̂OLS β̂BP β̂WF β̂OLSDC β̂BPDC β̂WFDC β̂∆7 β̂OLSD

lnM, lnQ 1.1450 1.0028 1.1033 1.1683 1.0935 1.1750 1.0204 1.1608

lnQ, lnM 0.7889 0.9859 0.7005 0.5786 0.8742 0.5696 0.9800 0.5894

lnK, lnQ 0.9899 1.0351 0.6081 0.1621 -0.0170 0.1099 1.5176 0.2313

lnQ, lnK 0.6751 0.6018 0.3281 0.0852 -0.1584 0.0563 0.6589 0.1203

Wood and Wood Products: N = 603, T = 8

y, x β̂OLS β̂BP β̂WF β̂OLSDC β̂BPDC β̂WFDC β̂∆7 β̂OLSD

lnM, lnQ 1.0940 1.0535 1.0747 1.1062 1.0635 1.1106 1.0779 1.1046

lnQ, lnM 0.8940 0.9477 0.8127 0.6981 0.9290 0.6869 0.9277 0.7078

lnK, lnQ 0.9843 1.3865 0.6858 0.2111 0.1081 0.1855 1.7914 0.3004

lnQ, lnK 0.7816 0.5566 0.3476 0.1272 0.8143 0.1089 0.5582 0.1719
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Paper and Paper Products: N = 600, T = 8

y, x β̂OLS β̂BP β̂WF β̂OLSDC β̂BPDC β̂WFDC β̂∆7 β̂OLSD

lnM, lnQ 1.0809 1.0867 1.0759 1.0687 1.0630 1.0664 1.0964 1.0728

lnQ, lnM 0.8935 0.9194 0.7656 0.5560 0.9088 0.5410 0.9120 0.5907

lnK, lnQ 0.9711 1.4169 0.9815 0.3001 0.3790 0.2611 1.5207 0.4801

lnQ, lnK 0.8141 0.6527 0.3757 0.0957 1.0722 0.0812 0.6576 0.1593

Chemicals: N = 229, T = 8

y, x β̂OLS β̂BP β̂WF β̂OLSDC β̂BPDC β̂WFDC β̂∆7 β̂OLSD

lnM, lnQ 1.0337 1.0228 1.0275 1.0522 0.9922 1.0573 1.0167 1.0488

lnQ, lnM 0.9484 0.9764 0.8443 0.6922 0.9644 0.6770 0.9836 0.7121

lnK, lnQ 1.0499 1.3520 0.8164 0.1929 0.5105 0.1456 1.3626 0.3069

lnQ, lnK 0.8175 0.7071 0.4447 0.1186 0.8560 0.0883 0.7339 0.1861
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Table 24.2:

Input elasticities and inverse input elasticities.

GMM estimates of differenced equations, with all IV’s in levels

Q = output, M = materials, K = capital

In parenthesis: Cols. 1 – 5: Standard deviation estimates. Cols. 6 – 7: p values

Textiles: N = 215, T = 8

y, x β̂Dx β̂Dy β̂Dxy β̃Dx β̃Dy χ2(β̃Dx) χ2(β̃Dy)

lnM, lnQ 1.0821 1.1275 1.0900 1.0546 1.0825 51.71 70.39

(0.0331) (0.0346) (0.0350) (0.0173) (0.0169) (0.2950) (0.0152)

lnQ, lnM 0.8404 0.8931 0.8064 0.8917 0.9244 86.55 59.08

(0.0283) (0.0283) (0.0363) (0.0143) (0.0148) (0.0004) (0.1112)

lnK, lnQ 0.5095 0.6425 0.5004 0.5239 0.6092 115.68 121.29

(0.0735) (0.0700) (0.0745) (0.0407) (0.0314) (0.0000) (0.0000)

lnQ, lnK 0.4170 0.6391 0.4021 0.4499 0.6495 130.50 133.94

(0.0409) (0.0561) (0.0382) (0.0248) (0.0330) (0.0000) (0.0000)

Wood and Wood Products: N = 603, T = 8

y, x β̂Dx β̂Dy β̂Dxy β̃Dx β̃Dy χ2(β̃Dx) χ2(β̃Dy)

lnM, lnQ 1.0604 1.0784 1.0632 1.0615 1.0772 63.97 90.28

(0.0123) (0.0124) (0.0128) (0.0089) (0.0098) (0.0502) (0.0002)

lnQ, lnM 0.9171 0.9362 0.9117 0.9195 0.9370 91.40 64.13

(0.0106) (0.0108) (0.0115) (0.0083) (0.0078) (0.0001) (0.0489)

lnK, lnQ 0.7454 0.8906 0.7494 0.8094 0.9398 290.60 281.57

(0.0409) (0.0439) (0.0425) (0.0305) (0.0310) (0.0000) (0.0000)

lnQ, lnK 0.4862 0.6003 0.4806 0.5261 0.6377 283.25 280.65

(0.0229) (0.0258) (0.0223) (0.0189) (0.0212) (0.0000) (0.0000)
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Paper and Paper Products: N = 600, T = 8

y, x β̂Dx β̂Dy β̂Dxy β̃Dx β̃Dy χ2(β̃Dx) χ2(β̃Dy)

lnM, lnQ 1.0766 1.1102 1.0726 1.0680 1.0820 43.12 81.97

(0.0150) (0.0162) (0.0155) (0.0119) (0.0123) (0.6340) (0.0012)

lnQ, lnM 0.8847 0.9204 0.8853 0.9119 0.9301 90.18 44.50

(0.0140) (0.0131) (0.0145) (0.0101) (0.0102) (0.0002) (0.5769)

lnK, lnQ 1.0713 1.2134 1.0818 1.0854 1.2543 193.21 220.93

(0.0430) (0.0477) (0.0435) (0.0324) (0.0398) (0.0000) (0.0000)

lnQ, lnK 0.5591 0.7048 0.5559 0.5377 0.7075 225.95 193.33

(0.0198) (0.0243) (0.0198) (0.0170) (0.0198) (0.0000) (0.0000)

Chemicals: N = 229, T = 8

y, x β̂Dx β̂Dy β̂Dxy β̃Dx β̃Dy χ2(β̃Dx) χ2(β̃Dy)

lnM, lnQ 1.0166 1.0540 1.0263 1.0009 1.0394 54.29 81.64

(0.0245) (0.0241) (0.0251) (0.0135) (0.0138) (0.2166) (0.0013)

lnQ, lnM 0.9205 0.9609 0.8972 0.9323 0.9815 87.10 57.90

(0.0230) (0.0239) (0.0231) (0.0122) (0.0130) (0.0003) (0.1324)

lnK, lnQ 0.9706 1.2497 0.9579 1.0051 1.2672 90.42 85.36

(0.0583) (0.0633) (0.0582) (0.0336) (0.0489) (0.0001) (0.0005)

lnQ, lnK 0.5550 0.7459 0.5637 0.5700 0.7762 96.70 89.57

(0.0317) (0.0374) (0.0314) (0.0236) (0.0273) (0.0000) (0.0002)
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Table 24.3:

Input elasticities and inverse input elasticities.

GMM estimates of level equations, with all IV’s in differences.

No mean deduction

Q = output, M = materials, K = capital

In parenthesis: Cols. 1 – 5: Standard deviation estimates. Cols. 6 – 7: p values

Textiles: N = 215, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 0.9308 0.9325 0.9274 0.9351 0.9404 56.76 81.49

(0.0031) (0.0052) (0.0036) (0.0024) (0.0022) (0.1557) (0.0013)

lnQ, lnM 1.0718 1.0743 1.0772 1.0628 1.0690 80.64 56.69

(0.0060) (0.0035) (0.0039) (0.0025) (0.0028) (0.0016) (0.1572)

lnK, lnQ 0.7408 0.7355 0.7381 0.7505 0.7502 107.05 116.19

(0.0079) (0.0079) (0.0072) (0.0059) (0.0055) (0.0000) (0.0000)

lnQ, lnK 1.3533 1.3483 1.3490 1.3211 1.3231 115.18 106.84

(0.0145) (0.0144) (0.0129) (0.0097) (0.0105) (0.0000) (0.0000)

Wood and Wood Products: N = 603, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 0.9473 0.9469 0.9471 0.9484 0.9496 141.10 159.95

(0.0011) (0.0011) (0.0011) (0.0010) (0.0010) (0.0000) (0.0000)

lnQ, lnM 1.0561 1.0557 1.0558 1.0529 1.0543 159.80 141.07

(0.0013) (0.0012) (0.0012) (0.0011) (0.0011) (0.0000) (0.0000)

lnK, lnQ 0.7545 0.7560 0.7546 0.7598 0.7699 207.64 272.33

(0.0030) (0.0033) (0.0029) (0.0027) (0.0029) (0.0000) (0.0000)

lnQ, lnK 1.3197 1.3244 1.3221 1.2927 1.3124 270.29 207.00

(0.0056) (0.0053) (0.0050) (0.0049) (0.0046) (0.0000) (0.0000)
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Paper and Paper Products: N = 600, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 0.9301 0.9300 0.9301 0.9304 0.9347 140.14 150.10

(0.0015) (0.0016) (0.0015) (0.0013) (0.0013) (0.0000) (0.0000)

lnQ, lnM 1.0751 1.0751 1.0749 1.0695 1.0744 149.82 140.18

(0.0019) (0.0017) (0.0017) (0.0015) (0.0015) (0.0000) (0.0000)

lnK, lnQ 0.7703 0.7658 0.7692 0.7761 0.7745 196.22 254.48

(0.0033) (0.0034) (0.0031) (0.0028) (0.0029) (0.0000) (0.0000)

lnQ, lnK 1.3025 1.2974 1.2970 1.2848 1.2850 252.95 195.79

(0.0057) (0.0055) (0.0051) (0.0048) (0.0046) (0.0000) (0.0000)

Chemicals: N = 229, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 0.9521 0.9518 0.9520 0.9532 0.9535 53.01 87.76

(0.0015) (0.0015) (0.0015) (0.0012) (0.0013) (0.2537) (0.0003)

lnQ, lnM 1.0506 1.0503 1.0503 1.0486 1.0490 87.69 52.98

(0.0017) (0.0017) (0.0016) (0.0014) (0.0014) (0.0003) (0.2544)

lnK, lnQ 0.7877 0.7886 0.7884 0.7881 0.7994 96.57 117.54

(0.0046) (0.0048) (0.0045) (0.0040) (0.0037) (0.0000) (0.0000)

lnQ, lnK 1.2662 1.2686 1.2659 1.2470 1.2652 117.00 96.55

(0.0077) (0.0074) (0.0072) (0.0058) (0.0064) (0.0000) (0.0000)
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Table 24.4:

Input elasticities and inverse input elasticities.

GMM estimates of level equations, with all IV’s in differences.

With mean deduction

Q = output, M = materials, K = capital

In parenthesis: Cols. 1 – 5: Standard deviation estimates. Cols. 6 – 7: p values

Textiles: N = 215, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 1.0219 1.2148 1.1881 1.0739 1.1749 54.66 73.56

(0.0644) (0.1202) (0.0786) (0.0289) (0.0316) (0.2065) (0.0079)

lnQ, lnM 0.7345 0.9392 0.7048 0.7428 0.8834 64.48 52.42

(0.0730) (0.0559) (0.0621) (0.0225) (0.0242) (0.0460) (0.2720)

lnK, lnQ 1.0348 1.2201 1.0776 0.7504 1.3279 84.43 76.36

(0.1471) (0.1514) (0.1153) (0.0703) (0.0808) (0.0007) (0.0043)

lnQ, lnK 0.5967 0.7045 0.5902 0.4599 0.6675 69.04 94.75

(0.0755) (0.1190) (0.0682) (0.0322) (0.0546) (0.0198) (0.0000)

Wood and Wood Products: N = 603, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 1.0501 1.1174 1.0813 1.0646 1.1328 63.26 65.06

(0.0219) (0.0245) (0.0235) (0.0140) (0.0188) (0.0567) (0.0415)

lnQ, lnM 0.8740 0.9425 0.8888 0.8644 0.9277 62.69 62.27

(0.0192) (0.0189) (0.0194) (0.0145) (0.0123) (0.0625) (0.0671)

lnK, lnQ 0.6696 1.4487 0.8460 0.4414 1.4470 100.40 126.86

(0.0927) (0.1615) (0.0794) (0.0489) (0.1093) (0.0000) (0.0000)

lnQ, lnK 0.5188 0.7927 0.5363 0.3165 0.9208 102.10 149.90

(0.0655) (0.0905) (0.0546) (0.0339) (0.0617) (0.0000) (0.0000)
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Paper and Paper Products: N = 600, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 1.0797 1.0883 1.0766 1.0799 1.1376 42.95 83.36

(0.0242) (0.0410) (0.0216) (0.0185) (0.0301) (0.6408) (0.0009)

lnQ, lnM 0.8911 0.9172 0.8911 0.8271 0.9124 79.18 43.00

(0.0334) (0.0209) (0.0185) (0.0233) (0.0158) (0.0023) (0.6388)

lnK, lnQ 0.9242 1.2121 0.9624 0.8171 1.2018 59.67 158.86

(0.0641) (0.1117) (0.0540) (0.0427) (0.0791) (0.1017) (0.0000)

lnQ, lnK 0.5953 1.0319 0.7451 0.3715 1.0560 141.11 62.95

(0.0635) (0.0711) (0.0444) (0.0321) (0.0506) (0.0000) (0.0598)

Chemicals: N = 229, T = 8

y, x β̂Lx β̂Ly β̂Lxy β̃Lx β̃Ly χ2(β̃Lx) χ2(β̃Ly)

lnM, lnQ 0.9721 1.0217 0.9950 0.9805 1.0253 55.85 83.10

(0.0269) (0.0278) (0.0225) (0.0179) (0.0179) (0.1765) (0.0009)

lnQ, lnM 0.9619 1.0196 0.9760 0.9429 0.9992 81.75 55.71

(0.0262) (0.0279) (0.0214) (0.0159) (0.0179) (0.0013) (0.1798)

lnK, lnQ 1.1013 1.4280 1.1151 0.9795 1.4408 68.96 69.82

(0.0692) (0.1429) (0.0623) (0.0465) (0.0838) (0.0201) (0.0170)

lnQ, lnK 0.6348 0.8281 0.7261 0.5150 0.8536 67.88 71.83

(0.0680) (0.0550) (0.0428) (0.0355) (0.0390) (0.0247) (0.0113)
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