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Abstract

This paper considers estimation of panel data models with fixed effects.
First, we show that a consistent “unrestricted fixed effects” estimator does
not exist for autoregressive panel data models with initial conditions. We
derive necessary and sufficient conditions for the consistency of estimators
for these models. In particular, we show that various widely used GMM
estimators for the conditional AR(1) panel model are inconsistent under
trending fixed effects sequences. Next, we derive, justify, and compare re-
stricted Fixed Effects GMM and (Q)ML estimators for this model. We find
that the FEML estimator is asymptotically efficient, whereas the Modified
ML estimator is not. We also compare the fixed effects approach for es-
timating the conditional AR(1) panel model and covariance parameters in
static panel data models with the correlated random effects approach.
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1. Introduction.

One of the advantages of panel data over cross-sectional data when estimating
regression models is the possiblity to allow for so-called ‘individual’ effects that
can capture unobservable, time-invariant effects which may be correlated with
the observable variables. Whilst in most econometric applications these individual
effects can be modeled as (correlated) Random Effects (RE), in some cases a Fixed
Effects (FE) approach should be adopted in order to obtain consistent estimators.
In this paper we will consider GMM and ML estimation of two panel regression
models with fixed effects: a panel AR(1) model with initial conditions and a static
panel model with covariance parameters.

Various widely used GMM estimators for dynamic panel data models, e.g.
those due to Arellano and Bond (1991), Ahn and Schmidt (1995), and Arellano
and Bover (1995), exploit moment conditions that involve differences of the data.
However, since these moment conditions also involve levels of the data, the cor-
responding GMM estimators are not consistent for all fixed effects sequences,
unlike e.g. the First Difference Maximum Likelihood Estimators for stationary
panel models (see MaCurdy (1981a)). For instance, the Arellano-Bond GMM
estimator (1991) which uses instruments in levels is inconsistent if the sequence
of squared individual mean effects follows a linear trend. Such a situation could
arise, for instance, when modeling the behaviour of firms of different sizes.

In this paper we will prove an impossibility result and derive necessary and
sufficient conditions for the consistency of fixed effects estimators for conditional
dynamic panel data models, that is, for dynamic panel models with initial con-
ditions. In particular, we will show that a consistent “unrestricted fixed effects”
estimator does not exist for these models, and we will derive a necessary condition
(that is sometimes also sufficient) for the consistency of any fixed effects estimator
for the conditional AR(1) panel model. This condition is related to the deviations
of the initial conditions from the individual means. Subsequently, we will propose
various restricted FE GMM estimators and a FE (Quasi) ML estimator that are
consistent for arbitrary sequences of initial conditions and individual means that
satisfy this necessary condition for consistency. The aforementioned necessary
condition is also sufficient for the consistency of the Bayesian/Modified Maxi-
mum Likelihood estimator due to Lancaster (1997), but not for the consistency
of GMM estimators which involve levels of the data.

The FEML estimator for the conditional AR(1) panel model has also been
proposed by Hsiao et al. (1998). Their derivation and justification of the FEML
estimator are different from ours, which are based on the necessary condition for
consistency mentioned above.! The FEML estimator can also be viewed as a FE

'Hsiao et al.’s derivation and justification of the FEML estimator are based on unnecessarily



Quasi ML estimator. We will show that the latter is consistent under much weaker
and more reasonable assumptions than the “pure” FEML estimator. In particular,
we can relax the assumption that the first differences of the data have a common
mean and a common variance, and the assumption that they are independent
along the cross-section dimension of the panel.

Next, we will establish the connection under normality and (cross-sectional)
homoskedasticity between the FE and (Correlated) RE (Q)ML estimators for the
conditional AR(1) panel model, and their GMM counterparts. As a by-product,
we find that the FEML estimator is asymptotically efficient under these condi-
tions.

We will also show that the FEML estimator for the conditional AR(1) panel
model is asymptotically more efficient than the Bayesian/Modified ML estimator
of Lancaster (1997). This implies that the Modified ML approach of Neyman
and Scott (1948) and the Bayesian approach (see Lindley and El-Sayyed (1968),
Lancaster (1997), and Kruiniger (1998)) do not always yield the most efficient
FE estimator if the ordinary ML estimator is inconsistent. The Conditional ML
approach yields an inconsistent estimator in this case.

Finally, we will compare various fixed effects estimators with the corresponding
correlated random effects estimators. It is well known that in a static regression
model a correlated random effects estimator for the slope parameters is (asymp-
totically) equivalent to a fixed effects estimator when the individual effects are
correlated with all regressors (see e.g. Hsiao (1986)). This result holds true under
any intertemporal covariance matrix of the disturbances. Below we will show that
this result does not carry over to estimators for the parameters of the covariance
matrix itself: in that case a correlated random effects approach leads to a more
efficient estimator than a fixed effects approach. We will also compare the fixed
effects approach to estimation with the random effects approach for the condi-
tional AR(1) panel data model within a framework due to Chamberlain (1980).
In particular, we will show that the RE (Quasi) ML estimator is more efficient
than the FE (Quasi) ML estimator for this model.

The outline of the paper is as follows. Section 2 derives a necessary condition
for consistency of any estimator for the conditional AR(1) model. It also discusses
sufficient conditions for the consistency of various widely used GMM estimators
for this model, proposes new FE GMM estimators, derives their asymptotic distri-
butions under various assumptions about the individual mean effects sequences,
and examines the properties of the Modified ML estimator and the Conditional
ML estimator. Section 3 derives the “pure” FEML estimator and the FEQML
estimator for the conditional AR(1) panel model, gives an alternative justification

strong assumptions. On the other hand their paper does not mention that the fixed effects have
to satisfy a restriction for the FEML estimator to be consistent.



for the FEML estimator, and compares the FE(Q)ML estimator with the Modi-
fied ML estimator, the Conditional ML estimator, and the (correlated) RE(Q)ML
estimator. Section 4 presents and compares various ML and GMM estimators for
covariance parameters in static panel regression models. Section 5 concludes.

2. Fixed effects estimators for dynamic panel models with
fixed initial conditions.

One possible way of dealing with individual effects in regression models is to ap-
ply a ‘within’ transformation to the model such that the individual effects drop
out. In this section we will examine the asymptotic properties of two types of
estimators for the AR(1) panel model with initial conditions that make use of
such a transformation: GMM estimators, e.g. those due to Arellano and Bond
(1991) and Ahn and Schmidt (1995), and a Maximum Likelihood (ML) type esti-
mator, i.e. the Modified ML Estimator due to Lancaster (1997). Notwithstanding
the application of the transformation, the consistency of the GMM and ML-type
estimators for the conditional AR(1) panel model does still depend on the asymp-
totic behaviour of the sequence of the individual effects. As a matter of fact, the
distribution of the transformed data still depends on the individual effects.

We will present necessary and sufficient conditions on the sequences of individ-
ual effects and initial conditions for consistency of estimators for the conditional
AR(1) panel model. Tt turns out that a necessary condition for the consistency
of any estimator for the conditional AR(1) panel model is that the average of the
squared differences between the initial conditions and individual effects converges
in probability. This condition will also be sufficient for consistency in the case of
the Modified ML estimator, and for what we will call Fixed Effects GMM estima-
tors. We stress that the necessary condition for consistency does not require that
(P)limy oo NN 12 = 0% < 00.

We will also examine the Conditional ML estimator for the conditional AR(1)
panel model.? This estimator will be shown to be inconsistent.

The AR(1) panel model with fixed initial conditions and fixed individual ef-
fects, u,, is given by

Yi = pyi1+ (L= plpit+e;, —1<p<1, (2.1)

where yi = (yi2 - Yir), ¥i1 = (Yi1 - Yir-1), ¢ is a vector of ones, and
i €Z ={1,2,..,N}. So for each individual unit we have T observations on
y, including the initial observation y;;. The designation ‘fixed” means that we

2Tn the likelihood context a consistent estimator for the parameters of interest can sometimes
be obtained by conditioning on sufficient statistics for the incidental parameters, and maximizing
the resulting conditional joint density of the data. This is the Conditional Maximum Likelihood
approach (see e.g. Andersen (1970, 1973)).



make minimal assumptions about the initial conditions and individual effects
respectively. In the unit root case the individual effects disappear.

Let T = {2,,...,T}. We make the following assumptions (cf Ahn and Schmidt
(1997)):

Standard assumptions (SA):
i~ (0,02I7_1), i =1,..., N, (ind. dist.); E(Je;,|*"®) < Ay < o0, for some 6 > 0,
and Ay >0,VieZ andVteT ;|E(yi)| < oo, E(yine;) =0,V i €Z; and
lpil < oo, E(pe;) =0,VieZ if -1 <p<l

Below we also assume that 02 = limy_e S i, 07 < 00, where 02 = E(2,).
The version of the conditional AR(1) panel model which assumes SA implies
the following restrictions on the second moments of y; (cf Ahn and Schmidt):
E(yi,lAei,t) = O, t= 3, .oy T, (22)
E((yi,t - pyi,t71)2 - (yiﬂ - pyi,l)Q) =0, t=3,.., Ta and
E((Yit — pYi-1)Wis — pYis—1) — (Y3 — pYi2) Wiz — pyia)) =0,
9<s<t, t=4,..T.

The standard Arellano-Bond (AB) GMM estimator, p,5, exploits only the
following moment conditions, which do not require homoskedasticity of the ;s :

E(yisAeiy) =0, 1<s<t—-2 t=3,..,T. (2.3)
It is often useful to rewrite the conditional AR(1) panel model (2.1) as
Yi — pit = p(yi—1 — pit) + &1, —1<p< 1L (2.1)

We will now introduce the notion of essentially random effects:

Definition 2.1. We will say that {n,;}2, is a sequence of essentially random
effects when (p)limy_.oo7 SN o= o7 < 00,

Notice that the definition of essentially random effects allows for individual
effects 7, that are not random.
Let v;1 = yi1 — ;- In the sequel we will need the following assumption

Restricted Fixed Effects and Initial Conditions assumption (RFE):
1) (p)limN_m% Zf\il 1)1-271 = 02 < o0, and plimN_m% 22111 vi1€ir =0,VteT,
2)  (p)limy oo NN 42 = o7 < oo for some x > 0,

d
3) N1 Zf\il pivin — 0, for some A > 0, where

|0y < oo if o, is constant, and o, # 0 if A > 0.



Notice that A < 0.5k by the Cauchy-Schwarz inequality.

Below we will show that a Fixed Effects GMM or ML type estimator for p can
only be consistent if the v;,’s are essentially random effects.

An alternative more restrictive assumption is:

Restricted Fixed Effects and Initial Conditions assumption ' (RFE'):
1) wv;1,i=1,..,N, are i.h.d. random variables that satisfy
E(vi1) =9, and E(|v;1/*") < A; < oo for some §, Ay >0,V i € Z,

2)  (p)limy_oN 1 * 3N 42 = 02 < oo for some K > 0,

d
3) N1 Zf\il pivi1 — 0, for some A > 0, where
|0y < oo if 0,, is constant, and o, # 0 if A > 0.

Note that SA implies that E(v;1¢;¢) =0,Vi € Zand V¢ € 7, and that SA and
RFE" together imply that RFE1 holds. Although RFE' is weaker than assuming
random individual effects, it imposes restrictions on the individual effects and
initial conditions that — as we will see — are not necessary for consistency of fixed
effects estimators of the conditional AR(1) panel model. Assumption RFE relaxes
RFE' substantially because it allows E(v; 1) to be different across individuals and
it does not require cross-sectional independence of the v; ;’s.

The conditional AR(1) model can be rewritten as

Ayiz = (p = 1) (Yi1 — p) + €i2 (2.4)
Ay = pAyi1 +Aeiy t=3,...,T.

In appendix A, we prove the following lemmas:

Lemma 2.2. If RFE1 (or SA and RFE!’) holds, and E(|;;|*™°) < A < oo, V i
€Z,andV t €T, then (p)limy_.con SN (Wir — py)? <oo,VteT,

Lemma 2.3. If RFE1 (or SA and RFE!’) holds, and E(|;;|*™°) < Ay < o0, V i
€Z,andV t €T, then (p)limy_con SN (Ayi)? <oo,VteT.

We also prove the reverse:

Lemma 2.4. If (p)limy_cox SN (Agia)? < o0, YVt €T, E(ley[*?) < Ay <
oo,VieZ andV t € T, and if p]imNHOO% Zf\il vi1gir = 0, V't € T, then

(p)limy— o SV v} =02 < 0.



Maximum Likelihood estimators for p in (2.1) as well as any reasonable GMM
estimator for p depend on second order sample moments of the data. These
estimators will be consistent only if these sample moments converge in proba-
bility.> ¥ The second order sample moments can be rewritten as sums of cross-
sectional averages of squared levels, squared differences, and/or crossproducts of
levels and differences of the data. If the fixed effects and initial conditions satisfy
(P)imy—oe Do 02 = 02 < 00, then lemma 2.3 implies that the cross-sectional
averages of the squared differences will converge in probability, whereas cross-
sectional averages of the squared levels may well diverge. The implication of
lemma 2.4 is that (p)limy_.& S i, v?; = 02 < oo is in fact a necessary condi-
tion for the convergence in probability of the cross-sectional averages of squared
differences and therefore for the consistency of GMM or ML estimators for (2.1)
which depend on these averages.’

We conclude that a fixed effects GMM or ML estimator for (2.1) should only
depend on first differences of the data. Moreover, a fixed effects GMM or ML
estimator for (2.1) that is consistent for any sequences {y; 1} and {u,;} does not
exists. However, consistent restricted fixed effects GMM and ML estimators for
models that include assumption RFE1 do exist.

We note that RFE1, or (p)limy_ee3 SV (Ayiz)? < oo, is a reasonable as-
sumption that is met in most applications, possibly after rescaling the data.

2.1. GMM estimation under fixed effects.

In the appendix we prove the following result:

Theorem 2.5. Assume that SA and RFE hold, o, , is constant, T" = 3, and
|p| < 1. Then the standard Arellano-Bond GMM estimator p,p is consistent if

SRS SA )
Proor
See Appendix A. Notice that N~2-2* SN 12 = o(1) is equivalent to x < 1 + 2.

3We require convergence in probability of these sample moments in order to prove uniform
convergence of the criterion function (see e.g. Newey and McFadden (1994)).

4Under non-normality of the data, one may want to consider GMM estimators for p which
also exploit information contained in third and higher order sample moments. In that case,
issues similar to those discussed in this paper will arise. In particular, such a GMM estimator
is a consistent fixed effects estimator only if {v; 1} satisfies a generalized version of condition
RFE1. Below we will confine our attention to estimators that only exploit second moments of
the data.

5 As can be seen from (2.1') and (2.4), likelihood functions for the conditional AR(1) model
can always be rewritten such that they only depend on cross-sectional averages of squares and
cross-products of (r — p)v; 1, vi 1, and the disturbances, where r is the variable in the likelihood
function that corresponds to the true parameter p.
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When o, , is not constant, £ < 142\ is no longer sufficient for the consistency
of the standard AB GMM estimator.

Theorem 2.5. implies that if the individual effects are trending, then p 4z may
be a poor estimator.

A panel of firm data may fit the conditions of the following example:

Example 2.6. Let RFE’ hold with E(v;1) = 0 and E(v},) > 6 >0V i € Z, and
i = BV, Then £ S0, 42 = 056(N + 1) = O(N), and 7w = £ Y puny
N(0,Var(@w)), where Var(@w) = limy_oo N230, pE(v}). Thus k = 1
and A = 0. Moreover, y;Aez = %Zf\il yi1Ae; 3 < N(0,Var(y,Ac3)), where

Var(y;Aes) = limy o N 72 Zf\il 2u20?. It follows that k = 1+ 2\, and that the
standard AB GMM estimator, p 5, Is inconsistent.

The theorem below describes how the asymptotic distribution of p 45 depends
on the values of x and A:

Theorem 2.7. Let assumptions SA and RFE hold, let o, , be constant, T' = 3,
and |p| < 1. Moreover, let limy oo N™"" SN E(u,Ae,3)* = ¢, 0 < ¢, < 00,
and let limy oo N5 SN B(pei2)? = ¢y, 0 < ¢y < 0.

If k = A= 0, and {y;1A¢; 3} satisfies the Lindeberg condition, and if

also 0 < ¢y = limy oo NN E(y;1A¢,3)* < 00, then

N (Ba = p) > N0 [(p = D)o + (0 = Doyl o).

If k > 0, and {p,Ae; 3} satisfies the Lindeberg condition, then:

if0 < k<1, and X =0, N0 (5, — p) 5 N(0, [(p— )02+ (p— Douu] %C1).
if0 <20 < k< 142\ NOSUAt20 (50— ) 4 N(0, [(p — Do) 2C)).
Finally, if K > 1+ 2, and both {u;Ac; 3} and {2} satisfy

the Lindeberg condition, then:

ifr=1and A =0, (Pap =) = GEFE-Tor TNOG)"

. ~ d
ifk =142\ and A >0, (pup — p) — (p_l)i(’gﬂ\),(o@),

‘ R d N0,
if k> 142\, (PAB_P)_)ﬁ'

Proor

See Appendix A.
When the individual effects are trending, random sequences like {p;Ae; 3} can
still satisfy the Lindeberg condition:



Example 2.8. Let 02 = 0% V h € Z, and let p, = Bh* with a > —0.5 V
h € Z. Then YN | E(u;Aci3)? = 20262 SN | h** = O(N?**1). More generally, if
0< 6, <0? <A <oo,VieZ, then westill have SN | E(j1;Ae;3)? = O(N?*t1),
We can show that {4;Ae; 3} satisfies the Lindeberg condition by applying theorem
23.18 in Davidson (1994). Take X; = p;Ae; 3, and ¢; = p1;. Then X?/c? = (Ae;3)?.
Since E(|e;,|*™®) < Ay < 00, Vi €I,V t € T, we obtain that Ae; 5 is uniformly
Lo s bounded by applying the Minkowski inequality. It then follows from theorem
12.10 in Davidson that {X?/c?} is uniformly integrable. Let My = cy = uy and
3, = SN E(p;Ae;3)?. Since sup [N M3 /s%] = supy O(N72%)3*N?* = C' < o0,
we can conclude that {y;Ae; 3} satisfies the Lindeberg condition.

We have the following alternative to theorem 2.5, which involves assumption
RFEY instead of assumption RFE1:

Theorem 2.9. Let assumptions SA, RFEI', and RFE2' hold, T = 3, and
lp| < 1. Let Ay be the smallest positive number (A\; > 0) such that
limy_ oo N™1M Zf\il E(p;vi1) = cup with |c,,| < oo and ¢, # 0 if Ay > 0.
Moreover, let limy_oo N5 S°N Var(u[(p — Dvig + €i2]) = (3, 0 < (3 < 00,
for some k1 > 0, and let {p,[(p — 1)vi1 + €i2] — E(pi(p — 1)vi1)} satistfy the
Lindeberg condition. Then the standard Arellano-Bond GMM estimator, p 5, is
consistent if k1 < 1+ 2Aq.

Proor

See Appendix A.

The Arellano-Bond differences GMM estimator, p 44, uses lagged differences
of y;+—1 as instruments instead of levels, that is, it exploits the following moment
conditions

E(Ay; sAeg;) =0, 2<s<t—2, t=4,.,T. (2.5)

This estimator only involves differences of the data and will be consistent for any
sequence of fixed effects as long as assumption RFE1 (or RFE1’) holds.

Theorem 2.10. Assume that SA, and RFE1 hold. Then the Arellano-Bond
differences GMM estimator, papqis, is consistent.
Proor

See Appendix A.
The asymptotic distribution of p, 4, is easily derived. We make the following
assumptions:

Moment assumption 1 (MA1): 0 < 7' = limy oo & >0, 0} < 00.



Moment assumption 2 (MAZ2):
03, = limy_ o & SV E(v}e},) <oo,VteT.
Then it is straightforward to prove the following result:

Theorem 2.11. Let assumptions SA, RFE1, MA1, and MA2 hold, T = 4, and
|p| < 1. Moreover, let {Ay;2Ae; 4} satisfy the Lindeberg condition.

Then N (Bapais — p) > N(0,[(p — 1)%p0% + (p — 1)0?] 2[2(p — 1)%02%, + 25)).

When a GMM estimator for (2.1) exploits all the AB moment conditions that
involve only first-differences of the data, (2.5), in an optimal way, the AB moment
conditions that involve levels of the data, (2.3), will be redundant if £ > 2.

Corollary 2.12. Assume that SA and RFE hold, ¢,,, is constant, and that |p| <
1. In addition, let assumptions MA1, and MA2 hold and let {Ay; ;Ac;+} satisfy
the Lindeberg condition Vs,t € T that satisfy s +2 < t. Then if kK > 2\ the
optimal Arellano-Bond GMM estimator for p only exploits the moment conditions

in (2.5): poap = /p\OABdif'
Proor

Trivial. As can be seen from Theorems 2.7 and Theorem 2.11, if kK > 2\ the rate
of convergence of p,p (when T' = 3) is lower than that of p,p4, (When T' = 4).

Just like the standard AB GMM estimator for p does not exhaust the set of all
the second moment conditions, the AB differences GMM estimator for p does not
exhaust the set of all the second moment conditions that follow from assumption
SA and involve only differences of the data.

The complete set of second moment conditions implied by the conditional
AR(1) panel model corresponds to

Yi1 ( Vi Ay (De;)' )
E Aym )
DEZ'

where D is the (T'—2xT'—1) first difference matrix with Dy, = —1 and Dy, j+1 = 1,
k=1,...,T — 2, and zeros elsewhere. The Random Effects Conditional GMM
estimator for p exploits all these second moment conditions, or equivalently, the
moment conditions in (2.2).

As we have seen above, GMM estimators for p which exploit moment condi-
tions involving levels of the data, e.g. y;1, are not consistent for all sequences of
fixed effects that satisfy RFE. On the other hand, Fixed Effects GMM estimators
— which are consistent for any sequence of fixed effects that satisfies RFE1 —

10



only exploit moment conditions that only involve differences of the observations.
Noting that Ay; 2 = ;2 — (1 — p)vi1, and De; = Dy; — pDy; 1, SA, and RFE1
imply

N
. 1 Aym ( Ayi,Q (Dyz‘ - PDyz',fl)/ ) _
pj\}lg;o N ZZ; { ( Dy; — pDyi, 1 ) a (26)
o2+ (1—pP2c2 - 0
0 o’H ’

where H = DD'.°

We will call the GMM estimator for p in the Conditional AR(1) panel model
which exploits all the moment conditions in (2.6) the Fixed Effects Conditional
GMM estimator. This GMM estimator is the solution of a third-order polynomial
in p just like the Random Effects Conditional GMM estimator for p.

The ‘moment condition’ plimy e & > r (Ayi2)? = 02 + (1 — p)202 is re-
dundant for estimating p, because it is the only moment condition in (2.6) that
involves o2. Cross-sectional heteroskedasticity does not pose a problem for esti-
mating p, since the 2 4 §-th moments of the &, E(|;¢|***), are bounded V i € Z,
and V ¢t € T, and the cross-sectional average of the o? converges. One could, of
course, also allow for heteroskedasticity in the time-series dimension of the panel
at the cost of introducing additional parameters.

Compared with the (Optimal) FECGMM estimator for p, the (Optimal)
RECGMM estimator exploits some additional moment conditions which involve
levels of the data. These extra moment conditions are not redundant. Therefore,

we have the following result:

Theorem 2.13. The Optimal Random Effects Conditional GMM estimator for
p, which exploits (2.2), is asymptotically more efficient that the Optimal Fixed
Effects Conditional GMM estimator for p, which exploits (2.6).

Proor

See Appendix A.

A special case arises when the {y;,} are stationary. In that case E(v},) =
o2/(1 — p?) and it follows that plimy_eo & > (Ayi2)? = 202/(1 + p). After
substituting this moment condition for plimpy_ec + S| (Ayiz)? = 0%+ (1 - p)?0?
in (2.6), we can obtain the Minimum Distance estimator for the stationary model

0We can extend these results to the conditional AR(1) panel model with exogenous regressors:
Yi = pyi—1 + tp; (1 — p) + X, 8 + €;. In this model we define v; 1 = y;,1 — p; — T;8/(1 — p). Then
we obtain AinQ = (:Eijg — Tz)lﬂ + €42 — (1 — p)viyl.

11



with fixed effects (see also Chamberlain (1984)). Under homoskedasticity and
normality the OMD estimator is asymptotically equivalent to the Conditional
MLE for the stationary model with fixed effects (see Kruiniger (1998, 2000a)).

2.2. Modified Maximum Likelihood estimation.

The conditional AR(1) panel model with fixed effects can also be estimated by the
maximum likelihood method. Nickell (1981) has shown that the ordinary and the
within maximum likelihood estimator for p in this model, which are both equal
to the LSDV estimator for p, are inconsistent. However, Lancaster (1997) has
proposed a Modified Maximum Likelihood Estimator (MMLE) for this model.”
We will briefly discuss this estimator and then derive a necessary and sufficient
condition for consistency of this estimator.

For the remainder of this section we will assume that the ¢;; are normally
distributed and homoskedastic: &;|y; 1, p; ~ N(0,0%I) Vi € Z.

The Modified MLE for (p, 0%) is equal to the maximizer [with respect to (r, s?)]
of the Modified Likelihood function, which is proportional to

sH) = H@-(T, sH) = (2.7)
exp(N¢(r)) N(T= 2)l_Iexp (—%Z Yir = Ui — r(ig—1 — @i,l))2>,

1 T .
Whereﬁ(r)—T_lz , r'.

t=1

Taking logarithms and dividing by the sample size (N) yields

N =€) = (1= 2)ogs — 55 > 1V Qi i
= &(r)— (T —2)logs (2.8)
11 ,
s 2+ (o= )y Qe + (p = r)yi)

11 1 2
TaN Z(P — 7)Y, 1 Qe — 22 N (0 = 7)°i 1Q¥i -1,

"See Neyman and Scott (1948) for the Modified Maximum Likelihood approach.
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where (@ is the so-called within matrix. Since Q)¢ = 0, the last two terms are equal
to

11 & e
—QNZ )(Yi,—1 — p3t)' Qei — _NZ (i1 — 1) QYi1 — pi0)-

Using that (y; — p;¢) = p(yi,—1 — pit) + €i, we can rewrite the last two terms as a
function of ¢; and (y;1 — p;)-

To prove consistency of the Modified Maximum Likelihood Estimator we need
to verify that = log p(r, s*) converges uniformly in probability, among other con-
ditions. Uniform convergence of + log p(r, s?) follows from assumptions SA and
RFE1. We therefore have the following result:

Theorem 2.14. Let assumption SA hold, let —1 < p < 1, and let 0> > 0. Then
the Modified MLE for (2.1) is consistent if and only if assumption RFE1 holds.

PROOF

See appendix A. The proof follows Kruiniger (1998) apart from the uniform con-
vergence part.®

When the model contains exogenous regressors (X;3(1—p)), assumption RFE1
has to be replaced by a more general version in order to prove consistency of the
Modified MLE. After redefining v;, as y;1 — p; — Z;3, we not only need to assume
that plimy_ . % Zf\il 1;2-271 = 02 < o0, and plimN_m% Zf\il vi1€;¢ = 0, but also
plimy oo % Zf\il 0;1QX; = Yygz, where X, is constant and finite. We require
similar assumptions in order to prove consistency of the FECGMM estimator for
the model with exogenous regressors.

Both the FECGMM estimator for the model without exogenous regressors and
the Modified MLE for that model depend only on the elements of + SN (Dyyi D).
When T' = 3, these estimators are equal to each other.

8 As a matter of fact, we prove consistency of the Modified MLE for the more general condi-
tional ARX(1) panel model with fixed effects and exogenous regressors. Lancaster (2001) proves
consistency of this Modified MLE under the assumption that the v;; are i.i.d. .
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2.3. Conditional Maximum Likelihood estimation under fixed effects.

We can rewrite the conditional AR(1) panel model as

Yi — Yt = @, (P)yin — pil + P(plei, i=1,.., N, (2.9)
where
1 0. .0
p 10
P(p) = p 10 , and ¢ (p) = (p— 1)E(p)e.
. p 1 0
pT72 p 1

It is clear from formulation (2.9) that the conditional AR(1) panel model
contains only one sequence of incidental parameters, i.e. {y;1 — #,}-

The Conditional ML approach studied by Andersen (1970, 1973) attempts to
derive consistent estimators for the parameters of interest in a model by condi-
tioning on sufficient statistics for the incidental parameters in that model.

Let V(p) = *P(p)L(p)’. Then a sufficient statistic for (y;; — ;) is given by

Yip — by = (g’lz‘lgl)‘lg’lz‘l(m —Yinl) = VP(p) " yi — Yi1l). (2.10)

T—-1
We note that the sufficient statistic for (y;1 — ;) is not a true statistic since it
depends on p.

The Conditional ML estimators for p and o2 in the conditional AR(1) panel
model are then defined as the maximizers of the conditional likelihood function
Hﬁil Le(yi — vi—1|9i1 — i, yi1). These Conditional ML estimators for p and o
can be shown to be inconsistent, even if assumption RFE1 holds.’

Theorem 2.15. Let assumptions RFE1 and SA hold, and let 0? > 0. Then the
Conditional MLE for (2.1) which is based on Hf\il Lo(yi — Yi—1|9in — 5 Yin) Is
inconsistent.

Proor

See appendix A. See also Kruiniger (1998).

9 Andersen (1970) has only proven consistency of CMLE’s that are obtained by conditioning
on true statistics.
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3. Fixed and random effects ML estimators for dynamic
panel data models with initial conditions.

In this section we will derive the Fixed Effects ML estimator for the autoregressive
parameter in the AR(1) panel model with fixed initial conditions. We will show
that the correlated Random Effects ML estimator and the Fixed Effects ML es-
timator for this parameter are asymptotically equivalent to the ORECGMM and
OFECGMM estimators, respectively, which were discussed in section 2. Finally,
we will compare the FE MLE with the Modified MLE and the Conditional MLE.
In the sequel we will refer to the AR(1) panel model with initial conditions

Yi = PYi—1 + ;L + &5, (2.1)
where 1, = (1— p)j,

as “the conditional model.”

3.1. Correlated random effects ML and GMM estimators.

Chamberlain (1980) describes a maximum likelihood approach for estimating p in
the conditional model when both the individual effects and the initial conditions
are essentially random. He allows the distribution of the individual effects to
depend upon the initial conditions. This leads to the following ‘correlated effects’
specification

[y = TY;i1 + Vi,

where v; 1s a new random effect and where

N 5
m = (p) lim 722 1 Yol Hi
N—oo Z 1%1

so that the new random effects are uncorrelated with the initial conditions

Y

) Y-

and

N
.1 y o1
() Jim > i =7 (p ngr;oﬁzyn NhilioN;”?'

0W.lo.g. we will assume that E(v;) = 0 Vi € Z. A nonzero common mean of the v;’s can be
handled by including an intercept.
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The model then becomes

Yi = pYi, 1+ TYit + u, (3.1)
where wu; = v;t + &;.

After adding the assumption that the u; are normally distributed, application of
the Maximum Likelihood method to this model will yield Chamberlain’s correlated
Random Effects ML estimator for p in the conditional AR(1) panel model.!’ This
estimator is consistent and asymptotically efficient (see also appendix B).

A special case is m = 0. When 7 = 0, imposing this restriction leads to a more
efficient Random Effects ML estimator, i.e. the Uncorrelated Random Effects
MLE of Balestra and Nerlove (1966).

The parameter p in the conditional model can also be estimated by the Gen-
eralized Method of Moments. The formulation of the conditional model given in
(3.1) implies the same moment conditions for p as the original formulation given
in (2.1), i.e. the moment conditions in (2.2). When using formulation (2.1) of
the conditional model, one loses four of the “second moment” conditions for the
purpose of estimating p by eliminating the nuisance parameters, i.e. o2, and the
cross—sectional averages of yzl, [ and y; 1 fi;. When using formulation (3.1) of the
model, one has to eliminate o2, 7, and the averages of y?; and v} from the moment
conditions. It is easy to see that there is a one-to-one relationship between both
sets of parameters. Therefore, the optimal GMM estimator for p which exploits
all the second moment conditions is the same for both versions of the conditional
model. This estimator for p is the ORECGMM estimator.

We will now show that under normality and homoskedasticity the (correlated)
REML estimator for p is asymptotically equivalent to the ORECGMM estimator
for p.!? The joint density f(y;1,y:) can be factorized as g(y;|yi1)h(yi1). Notice
that f(yi1,v:i) ~ f(yi1,u:) and g(yi|yi1) ~ g(w;). The conditional model does not
impose any restrictions on (the parameters of) the marginal density of y; 1, h(yi1);
in particular, h(y;1) does not depend on the parameters in ¢(y;|y;1). Therefore,
Chamberlain’s REMLE, which is based on [, g(%lyi1), is equal to the Quasi
MLE for the same parameters which is based on the product of the joint den-
sities, Hf\il f(yi1,vi). Under normality and homoskedasticity, this QMLE for p

1Sims (2000) proposed an estimation approach for the AR(1) panel model where the initial
conditions and the individual means follow a bivariate (normal) distribution, which allows for
correlation between both variables. Thus Sims’ random effects approach also specifies a (mar-
ginal) distribution for the initial condition, whereas Chamberlain’s approach does not, i.e. his
approach still conditions on the initial observations and is therefore more general.

12If the conditional model contains an intercept, then the GMM estimator that is asymp-
totically equivalent to the REMLE also exploits the information in the first moments of the
data.
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is asymptotically equivalent to an Optimal Minimum Distance estimator for p,
which in turn is equivalent to the ORECGMM estimator for p.

We note that if the u; = v;e +¢;, 7@ = 1, ..., N, are normally distributed and if
the model is linear in u; only the first and second moments matter (see also Ahn
and Schmidt (1995)). Moreover, the ORECGMM estimator attains the semipara-
metric efficiency bound, while the REMLE attains the Cramér-Rao lowerbound.

3.2. Fixed effects ML and GMM estimators.

When neither the initial conditions nor the individual effects are essentially ran-
dom, we can still use a variant of Chamberlain’s approach to obtain a consistent
(Quasi) ML estimator for p, i.e. the Fixed Effects (Quasi) ML estimator for p. We
obtain this estimator by replacing p,; by v;1 — v;1, by assuming that the v;; are
(essentially) random effects 3, i.e. satisfy RFE1’ and homoskedasticity in the case
of the FEMLE, or satisfy RFEL in the case of the FEQMLE, and by assuming (or
imposing) normality. This is equivalent to imposing the restriction 7 = (1 — p) on
the conditional model in (3.1) and treating the v; = —(1 — p)v; 1 as (essentially)
random effects, which are drawn from a normal distribution. This leads to the
following formulation of the conditional model

Yyi = pyi—1+ (1 = p)yiae + us, (3.2)
where wu; = vt + ¢,

with the additional assumption u; ~ N(0, (1 — p)*o2u/ + o*1).M
We have the following result:

Theorem 3.1. Let assumption SA hold and let —1 < p < 1. Then the FE Quasi
ML estimator for the conditional AR(1) model, (2.1), is consistent if and only if
assumption RFFE1 holds.

Proor

See appendix B. Consistency of the “pure” FEML estimator follows as a special
15
case.

131n section 2 we have argued that the assumption that the v; 1 are essentially random effects
is necessary for the consistency of any fixed effects estimator for p in the conditional AR(1)
panel model. See lemmas 2.3 and 2.4 and the text following lemma 2.4.

14We assume that the cross-sectional average of the E(v;1), i = 1,...,N, is zero. If this
average is non-zero, our FE(Q)MLE is still consistent but an asymptotically more efficient fixed
effects MLE can be obtained after adding an intercept to the model.

15The “pure” FEMLE requires that the v; 1 are i.i.d. and normally distributed. However, this
requirement is not in the spirit of the fixed effects approach. Therefore, strictly speaking, the
estimator that we refer to in the text as a FE Quasi MLE could be considered as the true Fixed
Effects MLE, provided that the disturbances ¢;; are i.i.d. and normal.
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The FEQML estimator is “Quasi” in a double sense: it allows for heterogeneity
in the moments of the v; ;’s and for non-normality of the ¢;,;’s and the v;;’s (under
certain conditions, e.g. RFEL).

The FEML estimator for p based on (3.2) is equal to the QMLE for p which is
based on the density of y; — y; 1, and is (under normality and homoskedasticity
of the wu;’s) asymptotically equivalent to the OFECGMM estimator from section
2.16 This can be seen by taking differences between the equations for adjacent
observations in (3.2) and keeping the equation for the first ‘observation’ Ay, o.
This nonsingular constant transformation of system (3.2) yields

Ayig = tin = v +&ip = gip — (1 = p)viy (3.3)
Ayiy = pAyig 1+ Deiy t=3,..,T.

This system gives rise to the moment conditions in (2.6) which are exploited
by the OFECGMM estimator. It follows that the FEML estimator for p is the
most efficient Fixed Effects estimator under normality and (cross-sectional) ho-
moskedasticity. However, in general the FEQML estimator for p is less efficient
than the OFECGMM estimator. Moreover, since the ORECGMM estimator is
more efficient than the OFECGMM estimator (see Theorem 2.13), the RE(Q)MLE
is in general more efficient than the FE(Q)MLE. This is due to the fact that
the RE estimators assume and exploit that (p)limNﬁoo%Zfi WY < oo and

(P)limy o0 & S, 42 < 0o, unlike the FE estimators.

We notice that Hsiao et al. (1998) have also proposed the “pure” FEML
estimator for the conditional model. However, the assumptions that they have
made in order to derive the FEML estimator and to justify its use are unnecessarily
strong. In particular, they have made strong assumptions about the presample
differences of the y;;’s. Moreover, they have assumed that all the individual
processes started in the same period in order to achieve homoskedasticity of the
Ayia, i =1,..., N2 18 In contrast, we assume that the deviations of the initial
observations from the individual effects, i.e. the v;’s, are i.i.d. and normally
distributed. More importantly, we have noted that the FEML estimator can also
be viewed as a Fixed Effects Quasi ML estimator, which is valid under much
weaker conditions than the pure FEML estimator. In particular, the FEQMLE

16Tf the model contains an intercept, then the FE GMM estimator that is asymptotically
equivalent to the FEMLE also exploits the information in the first moments of the data.

1THsiao et al. condition on the first presample realizations of the {yi+} processes instead of the
initial observations, which is what the conditional model does. Furthermore, in their footnote
3, they implicitly assume that Var(Ay;, _m+1) =0V i € Z, where y; _,, is the first realization
of the {yi+} process.

¥0n the other hand, Hsiao et al. do not mention that the individual effects have to satisfy a
condition for the FEMLE to be consistent.
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for p and o2 is still consistent under heteroskedasticity of the v;1’s (or Ay;o’s)
(cf assumptions RFE1’ and RFE1), when the means of the v;;’s (Ay;2’s) are
different across individuals (cf assumption RFE1), and also under cross-sectional
dependence of the v; ;’s (cf assumption RFE1)." Lemmas 2.3 and 2.4 allow us to
assess the plausibility of assumption RFE1 directly.

The FEQML estimator may be an attractive alternative to the OFECGMM
estimator for a number of reasons. First, these estimators are asymptotically
equivalent under normality and homoskedasticity. Second, when 7' is large the
number of moment conditions exploited by the OFECGMM estimator will be
large, which may result in poor finite sample properties of this GMM estimator.
Third, to implement the OFECGMM estimator, one has to estimate a possibly
large-dimensional optimal weighting matrix. This may also result in poor finite
sample properties of this GMM estimator. The covariance matrix in the (quasi)
likelihood function on the other hand is parsimoniously parametrized.

When the u;’s are not i.i.d. and normally distributed, the asymptotic distribu-
tion of the FEQMLE will in general be different from the asymptotic distribution
of the FEMLE. If the u;;’s are i.h.d., one may obtain the asymptotic distribution
of the FEQMLE by applying the Lindeberg-Feller Central Limit Theorem. The
asymptotic variance of the FEQMLE can then be computed by using the sandwich
formula H 'GH !, where H is the asymptotic Hessian and G is the limit of the
outerproduct of the gradient of the log-likelihood function (cf MaCurdy (1981b)).

The FEML approach (or the OFECGMM approach for that matter) can easily
be extented to higher order conditional AR panel models. Consider the AR(2)
version: y; = p1Yi—1 + paYi—2 + (1 — py — po) ;e + £;. In this case we assume that
Vio = Yi2 — M; and v; 1 = ;1 — p; are essentially random. Then the first equation
of the transformed model reads Ay, 5 = v; +€;3 = €;3 + pavi1 — (1 — py)vs0.

Finally, we present a general framework for obtaining consistent (Q)ML and
GMM estimators

Yi — Yiat = p(Yi,—1 — Yi1t) + Tyt + ug, (3.4)
where wu; = vt + €.

If 7 = 0 we obtain the FE model, whereas if 7 # 0 we obtain the (correlated) RE
model, where both y; and p, are essentially random. The RE model implies the
moment conditions in (2.2) which are exploited by the ORECGMM estimator. If
7™ = p — 1, we obtain the uncorrelated random effects model. This model yields
one extra moment condition, E[(y;2 — pyi1)yi1] = 0, relative to those in (2.2).

1980 in contrast to what Hsiao et al.suggest, within a Quasi ML framework one can
in fact deal with E(Ay;2) = b;, where the b; are different across individuals, as long as

(D)Mot SN (Ayi2)? < oo. The latter requires that (p)limy—_eo SN, b2 < oc.

=1 "1

19



3.3. A comparison of the FEML estimator, the Conditional ML
estimator, and the Modified ML estimator.

In appendix B we show that if the u;’s are i.i.d. normal, then the FEML estimator
for p in the conditional AR(1) panel model is more efficient than the Modified ML
estimator (or Bayesian estimator) that was proposed by Lancaster (1997). Thus,
although both the Modified ML approach of Neyman and Scott (1948) and the
Bayesian method suggested by Lancaster (1997) and Lindley and El-Sayyed (1968)
may help to overcome the inconsistency problem of direct ML estimators, they do
not necessarily solve the inefficiency problem of ML which is also related to the
presence of incidental parameters in the model. On the other hand, if the u;’s are
not i.i.d. normal, in particular, if the v;;’s are not i.i.d. normal (but still satisfy
condition RFE1), then the FEQMLE for p is no longer asymptotically efficient and
the Modified MLE for p may asymptotically be more precise than the FEQMLE
for p. In this case only the OFECGMM estimator for p is asymptotically efficient.
Moreover, the limiting variances of the FEQML estimator and the OFECGMM
estimator will in general depend on the fourth order moment(s) of the v;;’s,
whereas the limiting variance of the Modified MLE only depends on the second
moment(s) of the v;;’s, whatever the distribution(s) of the v;’s is (are).

In the case of the conditional AR(1) panel model, the Conditional ML method
fares worse than the Modified ML method: it does not solve the inconsistency
problem of ML. In this case, the Conditional ML, method makes use of a sufficient
statistic that depends on p. Indeed, Andersen (1970) has only proven consistency
of Conditional ML estimators that are based on sufficient statistics which are true
statistics.

4. Inefficiency of fixed effects estimators for covariance pa-
rameters.

It is well known that in static regression models a fixed effects approach and
correlated random effects approach yield the same estimators for the mean equa-
tion parameters. In this section we will show that this does not hold true for
the covariance parameters. When the individual effects are essentially random
(effects), only a correlated random effects approach yields efficient estimators for
the covariance parameters, whereas generally only the fixed effects approach yields
consistent estimators for the covariance parameters when the individual effects are
not (essentially) random.
The static panel model with individual effects is given by

yi = XiB+ pi+ e,
e ~ iid (0,V), i=1,..N,
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where dim(g;) = 7. When discussing ML estimators, we will assume normality.

4.1. Estimation under fixed effects.

Kiefer (1980) has examined ML and GLS estimation of the static panel model
with fixed effects and arbitrary covariance matrix V. The standard fixed effects
MLE is always inconsistent for the covariance matrix, V', and in general also for
the slope parameters, 3, unless V' oc I. In the latter case the MLE for ( is equal
to the LSDV estimator for # and does not depend on the inconsistent estimator
for the variance of the ¢;, o*.

The Feasible GLS estimator that Kiefer proposes for 3 when V' is unknown, is
calculated in two steps: first (3 is consistently estimated by the LSDV estimator
and next a Within FGLS estimator of 3 is computed using a consistent estimator
for QVQ: N=' "N, Q(yi — XiBrspv) (% — XiBrspy) @, where Q = Iy — Lol

We make two remarks. First, as shown in appendix C, any within transforma-
tion matrix K, such that K¢ = 0 and rank(K) = T — 1, will yield the same FGLS
estimator. Secondly, it does not matter whether one first applies a GLS trans-
formation related to V' and next a transformation to remove the terms involving
the s or applies these transformations in reverse order: the fact that V' is not
consistently estimated by V = N1 S (yi— XiBrspy — Hiorst) (Yi— XiBropy —
Hiorst) does not affect the consistency of the resulting GLS estimator. To see
this, let P’P = V1, and let M, = Iy — Pu(/P'Pt)"'/'P'. Then M,M, M, = M,
and P'M,P =V — YY" — D/(DVD') 1D = Q(QVQ)~Q, where the struc-
ture of the first-difference matrix D was described in section 2. The equality in
the middle was established by Lancaster and Lindenhovius (1996).

When V' is parameterized, say V' = V(0), and the pu, are fixed effects, a
“within” ML approach will yield consistent estimators of both 5 and €, provided
that 6 is identified. All the “within” ML estimators for 3 and # which make use of
a “within” transformation matrix K such that Kt = 0 and rank(K) =T — 1, are
in fact equal to the Conditional MLE (see Kruiniger (1998) for the relationship
between transformed MLE’s and CMLE’s). Now, the CMLE will be consistent
under any sequence of fixed effects since the conditional likelihood function does
not depend on them.

4.2. Estimation under correlated random effects.

We will now discuss the correlated random effects approach to estimating  and
6. In the sequel we will assume that the puls are essentially random effects, i.e.
(P)limy o7 SN 2= 02 < 00, and (p)imy o7y SV X!X; < oc. In addition,
we will assume that all the regressors are (essentially) correlated with the indi-
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vidual effects, i.e. (p)limy_.con SN (Tpir — Ta) iy # 0 VEk € {1, ...,dim(B)}, and
vVt e {l,..,T}. The correlated random effects approach amounts to decomposing
the individual effects into a part that captures the correlation with the regressors,
and a remainder, say v;, that is uncorrelated with the regressors: u, = 7.£ + v;,
where the elements of z; are linear functions of the regressors in vec(X]), and
¢ = plimy_ (Ziil z;al)! Ziil Tip;, so that (p)limy_ % Zf\il z;v; = 0. In
addition, we have that (p)limy_c & S i, v? = 02 < oo. If we take the 7, equal
to /(02w +V(0)) 1 X;, then the Random Effects ML estimator of 3 and @ based

on
yi = c+X;B+1T€+vii+e,
vit+e; ~ did. (0,02 +V(9), i=1,..,N,

can be shown to be consistent and asymptotically efficient. Consistency fol-
lows from plimNHoo% Zfil X! (o2 + V)f1 w; = plimNHoo% Zfil z;v; =0, and
plimy oo SN T (o2 + V)t = [ (02 + V) ] plimy o0+ SN T
= 0.

Let u; = y; — c1— X, 3 —17¢ = vt +e;. Noting that E[Duu (021 + V)™ i) =
0, we can factorize the joint normal density of the uj,s as f(u;) = g(Du;)x
W[ (02! + V) W (020 + V)~ wy), where D is the first difference matrix de-
fined in section 2.2° The marginal density of [/ (021 + V) ™" )] 2/ (020! + V) '
depends on 3, &, 02, and 6, whereas g(Du;) only involves 3 and . We note that
h([d (02! + V) i N (020’ + V) " uy) does not contain any information on £,
because [ and ¢ correspond essentially to the same regressors, i.e.
[ (02 + V)T 7 (020 + V) ' X, and o (021 + V)7 X;. We can repara-
metrize the model so that [/ (62 + V) N (02 + V) Ty =
[ (020 + V) 7 (02 + V) (s — Xi€) with € = 8+ /(02 + V) k.

Thfrefore, Barr, r g can be obtained by maximizing Hf\il g(Du;) alone given
V(Ourr, re). Thus By, gp is a First Difference FGLS estimator which makes use of

DV(@M 1, re)D’. Tt follows that the correlated random effects MLE for /3, the fixed
effects MLE for 3, and the Within FGLS estimator for # which uses a consistent es-
timate of QVQ', are asymptotically equivalent. However, h([¢/ (620 + V)" ]! x
/(02! + V) ;) does contain additional information about 6 and therefore the
random effects MLE of 0 is asymptotically more efficient than the fixed effects
MLE of § which only maximizes [[Y, g(Du;):

Theorem 4.1. When T is fixed and the individual effects are essentially random
but correlated with all the regressors, the correlated random effects MLE of 0,
O, rE, Is asymptotically more efficient than the fixed effects MLE of 0, Onp,, pi-

20Tt can easily be shown that [DWD’'| = /W =1, |[IW]. See also Theorem 2 in Lancaster and
Lindenhovius (1996).
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Proor

Straightforward: see the discussion above.

When T' — oo, the contribution of the A([/' (2u/ + V)™ ] 2/ (62! + V) ' w;)
to the joint likelihood function Hf\i 1 f(u;) becomes negligible and the fixed effects
MLE of 0 is asymptotically equivalent to the random effects MLE of 6.

We notice that ML applied to a model with p; = [vec(X])]'m +w; (cf Mundlak
(1978), and Chamberlain (1980, 1984)), i.e. with Z; = vec(X}), will lead to a First
leference FGLS type estimator for 3, which is asymptotlcally equivalent to ﬁ rE
(and ﬁ rp) as well. This approach also yields an estimator for 6, 9 ML, that is more
efficient than the fixed effects estimator for . This can again be seen from the fac-
torisation of f(u;) as g(Duy)h([/' (02w + V)™ ] (62’ + V)" w;). In this case
we can reparametrize the model so that [/(0Zu + V) L]t X
o2 + V)t = [V(o2u + V)’lL]*lL’(UfULL’ + V) Yy — tfvec(X))]'7T) with
7 = [/(c2u + V) ] vec|Bd (620 + V)7 + 7. Since using the specification
p; = U (02 + V)71 X,€ 4+ v; amounts to imposing restrictions on 7 which involve
0, ie. m=wvec(&/ (o2 +V(0))), O is more efficient than QML7r

When 7 in p; = [vee(X])]'m + w; is not restricted to depend on 6 in some
way, the information matrix is block-diagonal, i.e. the non-diagonal elements in
the information matrix corresponding to the slope parameters § and 7 on the
one hand and the covariance parameters ¢ on the other hand are zero. It follows
that it does not matter for the efficiency of 0,;;, whether the elements of 7
that correspond to those regressors in X; which are not correlated with p,, are
restricted to equal zero or not. However, imposing zero restrictions on 7 (or §)
does lead to more efficient ML estimators for 3, provided that these restrictions
are valid of course.

4.3. Generalized method of moments estimators for covariance para-
meters.

There also exist fixed and random effects versions of the Generalized Method
of Moments for estimating . A Fixed Effects GMM estimator for 6 minimizes

{3 veclz[ (i — Xi ﬁFE)(yz Xi ﬂFE) D' = DVD'}WAL3-,; vech[D(y; — X; ﬁFE)
(yi— XiBpg)' D'— DV D'} for some weighting matrix W. A Random Effects GMM

estimator for 6 would minimize {)_, vech[(y; — Xz-BFE)(yz- - XZBFE)’ — ol —

VYWD, vech|[(y; — X, ﬁFE)(yz Xz-BFE)’ — 0w’ =V} for some weighting matrix

W. Consistency of GGMM rE requires that the uis are essentially random effects.
This Random Effects estimation procedure is equivalent to a GMM estimator
that exploits the moment conditions in E{vech[D(y; — XiBpp)(yi — XiBpp)' D' —

DV D'} =0, and E{[D(y; XﬁFE)( XBFE) e1—DVey|} =0, where e; is the
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first column of the identity matrix. Since the REGMM estimator for € exploits
more moment conditions than the FEGMM estimator, which are not redundant,
the former is asymptotically more efficient than the latter.

The Optimal FEGMM estimator for 6 is asymptotically equivalent to the
FEMLE for 6 under normality. The Optimal REGMM estimator for ¢ in turn
is asymptotically equivalent to 0z, but in general asymptotically less efficient

than 0y rE, except when the regressors in X; are not correlated with the ps.

5. Conclusions

In this paper we have studied estimation of various versions of the AR(1) panel
model with initial conditions. We have derived a necessary condition for consis-
tency of any estimator for the fixed effects version of this model. This condition
involves the deviations of the initial conditions from the individual (mean) effects.
The condition allows for cross-sectional correlation and heterogeneity of the data.
By imposing this condition on Chamberlain’s correlated effects formulation of the
model, we obtained the Fixed Effects (Quasi) Maximum Likelihood estimator.

A related but perhaps not very surprising result is that any consistent fixed
effects estimator for the AR(1) panel model with initial conditions involves only
first differences of the data. We have seen that if the individual effects are trending,
a GMM estimator for p which depends on levels of the data, e.g. the Arellano-
Bond GMM estimator, may have poor properties.

We have establised the connection under normality and (cross-sectional) ho-
moskedasticity between the FE(Q)MLE for p and the Optimal Fixed Effects Con-
ditional GMM estimator for p, which exploits all the second order moment con-
ditions that only involve differences of the data. It follows that the FE(Q)MLE
for p is asymptotically efficient under these conditions. Similarly, we have proven
asymptotic equivalence of the REMLE for p and the ORECGMM estimator for p
due to Ahn and Schmidt (1995). The latter is shown to be asymptotically more
efficient than the OFECGMM estimator for p.

The FEMLE for p was also compared with alternative likelihood approaches.
The Bayesian estimator using Jeffreys prior, or equivalently, the Modified MLE,
is asymptotically inefficient. Moreover, both the FEMLE for p and the Modified
MLE for p are very imprecise near the unit root. The Conditional ML approach
yields an inconsistent estimator for p.

Finally, it is shown in this paper that the Fixed Effects approach but also
Chamberlain’s m-approach lead to less precise estimators for covariance parame-
ters in static regression models than the Correlated Random Effects approach.
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A. Proofs for section 2.

PrOOF OF LEMMA 2.2

Let Ay > 0 be a generic constant. Recall that v;; = v;1 — p;.

The model reads as (yit — ;) = p(Yin—1 — p;) + i, VE € T.

Therefore, plimy oo Yoty (¥ir — #4)* = PP(PIIMN oo Doy (Yir 1 — 13)*+
2p plimNHoo% Zi]\il[(yi,t,l — [;)Eit]+ plimNHoo% Zfil ait, VteT.

Now, plimNHoo% Zﬁil(ym —p;)eir =0,V t €T, because of RFE1 (or
because of SA and RFE1’ which imply E((y;1 — ;)€is) = 0, and

E(|(yin — p)eid] %) < Ay). Tt follows that plimy_eet S0 (yio — p)eis =

p plimN_m% Z?;(yi,l — 1;)€ir+ plimN_m% Zf\il giogir=0,Vte {3, ... T}
By induction over ¢, we then obtain plimNHoo% Zﬁil(yz’,tfl — p;)eie =0, and

plimN_m% ZfL(yH — ) <oo,VteT. O

Proor or LEMMA 2.3

We have Ay, s = yie — pts + 1t — Yig-1 = (P — 1) (Yig1 — pt5) + €50, VEET.

Therefore, plimy_com > re; (AYie)? = (p — 1) (p)imy—con S (Yie1 — 1)+

2(p—1) plimNHoo% Zﬁl(yw,l — )it plimNHoo% sz\il af,t, VteT.

Using results from the proof of lemma 2.2, we obtain by induction over ¢ that

plimNHoo% Zf\il(yw,l — p;)eie = 0, and plimNHoo% Zf\il(Ayivt)Q <oo,VteT.
]

PrOOF OF LEMMA 2.4

We have Ayio = yio — p; + 1 — i1 = (p — D)(yi1 — 1) + €.

Therefore, (p — 1)2(P)limy oo Yoity (i1 — #:)* = Plimy ooy Soisy (Ain)*—
2(p—1) plimNHoo% Zf\il(yzl — [;)Eia— plimNHoo% Ziil 61272 < 0. O
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PrOOF OF THEOREM 2.5

Recall that v;7 = y;1 — ;. W.lo.g. we have assumed that 7" = 3. Then Arellano

and Bond’s GMM estimator exploits only one moment condition, E[y;1A¢g; 3] =0,

where Ag; 3 = Ay; 3 — pAy; o :

Pap = Do Yin Ayl 7 Do vinAyis] = p + Doy Ayio] T D yia Acig).

We can write the numerator as % Y yi1Aeiz = % > ouAciz+ % Yo vi1Aeg;s,

and the denominator as % D Yi1Ayio = % Yoviallp — V) (yi1 — p;) +€io] =

v Ll = Dy +viggia] + 5 20 il(p — Dvin + eig].

Let A; be a generic positive constant.

By assumption SA we have E(y;Ae;3) = 0 and E(e7,) < Ay < oo, Vi€ L.

Hence Var(N=1=2 3" p,Ac; 3) = N7272 N El(p,Ae:3)?] < N72722 57 u2A.

Therefore, limy_co Var(N =123 1;Ag;3) = 0if N72722 5" 42 = o(1).

It follows that N 1A p,Ag; 3 5 0 if N-272 3" 2 = o(1).

Now, N™1A5" A 5 ™0 implies that plimpy_,so N 12 > ouAgiz =0.

Therefore, plimy oo N1 p;Ac; 3 =0 if N72722 3" 12 = o(1).

Likewise, plimy oo N7 g0 = 0 if N72722 5 12 = o(1).

Since E(v;1€i¢) = 0, we obtain that plimy_. % Slp — 1)1}1-271 + vi1€i0] =

(p — 1)o2. In addition, we find that plimy_. & > v;1Ag;5 = 0.

Finally, the assumptions imply that plimy_.c N7 > (p— D)pvi1 = (p—1)0 0.

Thus the probability limit of the denominator of p 5 will be different from zero.
O
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PrOOF OF THEOREM 2.7

Recall that 02 = limy_.. + 31, 02 < 0.

In addition, limy_. N"17% SN E(u,Aci3)? = ¢, with 0 < ¢; < oo,

lmy oo N5 SN E(p652)% = Cy, with 0 < ¢, < 00, and

lmy_ oo N 7172 Zf\il Vi1 = Opy , 0 <A< 0.5k,

Then the following results can easily be verified:

If £ > 0, plimy o N7O00H) S0, 1 Ag; 5 = 0.

If £ > 1, plimy_eo N7* 3 [(p — 1)07; + vi1850] = 0.

If0<2XA <k < 142X plimy oo N7 wl(p — Dvig +2i2] = (p— 1) o0
If 0 < (g = limy_ oo N * Zf\il E(yi1A¢,3)* < 0o, and {y;1A¢; 3} satisfies

the Lindeberg condition, then N =% Ziil (RVAYI A N(0,¢p).
If0<k<1and X =0, then plimy_,oo N7! Zf\il YirAyio =

plimy o N3 [(p — 1)1)2271 + vi1€i0)+pPimy oo N1 p[(p — Dvig + €i0] =
(p=1Das+ (p— 1)

If 0 < 2X < Kk < 1+ 2\, then plimy_,oo N~172 Zfil Yi1Ayio = (p— 1)o,,.
Soif k =A=0,0<(y=limy_o N* Zfil E(y;1A¢,3)* < 0o, and {y;1As; 3}
satisfies the Lindeberg condition, then

N (Bai = p) 5 N0, [(p = D)o + (p = D] Co)-

If k > 0 and {p,Ac; 3} satisfies the Lindeberg condition, then

N703+R) S~ 1 Agy 3 = N7O5FR) N0y 1 Agy g + NSRS 1 Ae 5 < N(0,¢y);
if 0 <k < Land A =0, N9~ (5, — p) 5 N(0,[(p— )02 + (p — Dol 2C1);
if0 <20 < k<1424 NOSU=20 (5 ) L N(0,[(p — )0, 72C)).
Finally, if kK > 1+ 2\ and {p,c; 2} satisfies the Lindeberg condition, then

if Kk =1and A =0, N"0P+0) S Ay, o L(p—1)o+(p— Do ,w + N(0,¢,);
if k=1+2Xand A > 0, N 0500 S0 Ayy % (p— 1)a,, + N(0,C);

if £ > 142\, N7O50FR S 0 Agig 4 N(0,¢y).

So if {p;Ae; 3} and {p,e;2} satisfy the Lindeberg condition, then

3 — — - d N(07C1) .
if k=1and A =0, (Pap =) = GoEFE-Tor TNOG)

3 — “ d N(07C1) .
ifk=14+2 and A >0, (pog—p) — o et N0

‘ N d
1f/<;>1+2)\7(PAB_p)_>%' -
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Proor or THEOREM 2.9

The proof is similar to the proof of theorem 2.5. with one modification.

It is assumed that A; is the smallest positive number, A; > 0, such that
lHmpy o N1 Zf\il E(pvi1) = cuy with |cu.] < 00 and ¢,, # 0 if Ay > 0.
Moreover, limy_,oo N ™17 Zf\il Var(pl(p—1)vi1+ei2]) = (5, with 0 < (5 < o0,
for some k1 > 0, and {y;[(p—1)vi1+ei2] —E(p;(p—1)vi1)} satisfies the Lindeberg
condition.

It follows from these assumptions that limy_,o N1 Zf\i L EVar(g;y) < oo.
Therefore, if k1 < 1+ 2\;, we obtain that plimy ..o N7172 Y 1:[(p — 1viq] =
(p— 1)cuw, and plimy oo N2 3" 1A 3 = 0. O

Proor or THEOREM 2.10

Trivial. Notice that the first-differences of the data Ay, ¢, t = 2, ..., T, only depend
on y;1 and pu; through v; ;.

PROOF OF THEOREM 2.13

We will prove the theorem by showing for arbitrary 7" > 3 that there exists a
moment condition that is i) exploited by the ORECGMM estimator but not by the
OFECGMM estimator, and ii) not redundant relative to the moment conditions
that are optimally exploited by the FECGMM estimator.

We will show that E(y;1A¢e;3) = 0 is such a moment condition.

First note that the FECGMM estimator does not exploit E(y;1A¢;3) = 0,
because this moment condition involves data in levels. On the other hand, the
moment conditions exploited by the ORECGMM estimator can be formulated in
such a way that E(y; 1A¢; 3) = 0is one of them (see (2.2)), that is, the ORECGMM
estimator exploits E(y;1A¢;3) = 0, either explicitly or implicitly.

Now, the moment conditions and the weighting matrix of the OFECGMM esti-
mator only depend on N~ 13 | 42, through N2 3N 02 = N 1SN (y;1—p,)?
(i.e. 02). However, the optimal weighting matrix for the ORECGMM estimator
— which exploits E(y;1Ae;3) = 0 — also depends on N~1 3"V | 42, separately:
E[(N 'YL, ginAeis)?] = 202N 1300 o).

We conclude that E(y;1Ae; 3) = 0 is not redundant, and that Var(pprroau)
<Var(porrcanm)- O
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Proor or THEOREM 2.14

The conditional ARX(1) panel model with fixed effects (and K exogenous regres-

sors) can be stated as

Yi = pYi— + (L= ppe + X;,8(1—p) +e;, —1<p<1
with 81"X1',y1',1,/,ti ~ N(O,O’QI), Vi e .

In addition, we will assume that assumption SA holds, and o% > 0.
Let us define

0o . 000 1

1 0 0 0 P2

5 p 10 0 . P
. P 1 0 pT_3
pT—3 p 1 0 pT_2

and 8 = B(1 — p), then

Yio1 — it — T8 = p(yin — py — TLB) + PQX;B + Pe;
= ZZ —+ P&',

where Z; = ¢, (i1 — p; — T0) + PQX.p.
Let v;1 = y;1 — p; — 7, 8. We will add the following assumptions

QX; are 1.h.d. with E(|Amk7i7t|2+6) < Ay < 0,
Vke{l,.,K},VieI, VteT,
LN
and plimpy_ . N Z(A$z’,s)(ACI/’;¢) =%, Vs, t €T,

i=1

and

N N
. 1 9 9 . 1
plimy_ N E v = 0, < 00, plimy_ . N E v;16; = 0,
i=1 i=1

N
1
and plimy_ N Z”MA%JGS = Y with |X,| < oo,
i=1

Vke{l,. ., K},VteT.

Assumption (A.5) generalizes assumption RFEL.
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The modified log-likelihood function for the conditional ARX(1) panel model
(divided by N) is given by

1 - . T—2
N lng(T’, 527 b) = 5(7") - 2 IOg 5? (A6)
s XBQ X
52 Yi — TYi—1 i Yi — TYi,—1 — A40),
252 N —
T-2
1 T—1-1t
where £(r) = 1 ; r

and the modified log-likelihood equations are given by the sums (over i) of

. 1 .
Wi, 5%, b) = &(r)+ ?(yz —ryi—1 — Xib)' Qyi—1 = 0, (A7)

. T -2

\IJUQ,i(rv SQ, b) - 252

1 . .
@(?Ji —TYi—1 — Xib)'Q(yi —TYi—1 — Xib) =0,

. 1 .

Usi(r,s%,b) = ?(yi —ry;,—1 — X;0)'QX; =0.

We can rewrite these functions using

Yi — TYi—1 — XZE = (p — T)yi,—l + XZ(B — B) + &;. (AS)
It follows from Q¢ = 0, (A.3) and (A.8) that
Qyi — ryi—1 — Xib) = (A.9)

Q(p — 1) (yi,—1 — pit — (T, 5) +VX2'(B —b)+e;) =
Q((p — r)(Zi + Pz) + Xi(B — b) + &5).

We will prove that one of the solutions of the modified log-likelihood equations
is a consistent estimator for (p, 02, 3) by verifying the conditions of theorem 4.1.2.
of Amemiya (1986).

By using (A.9), it can easily be shown under the assumptions of the model
(including (A.4) and (A.5)) that & log p(r, s?,0) = + SN log pi(r, 52, b) converges
uniformly in probability to

T—2 o?

logﬁA(n 8276; P 0275) = 5(7“) - lOg 82 - @tT(Q) (AlO)
1

—53l(r = ) [Bege + o*tr(P'QP)] = 2(r — p)o*tr(QP(p))
+(b = B) Sagu(b = B) +2(r — p)Bagu(b = D)),
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where ¥,,, = plimy_ o % Ziil Z{QZ < 00, Ygge = plimy_oo % Zf\il XQX; <
00, X.gp = plimy_oo SV Z1QX;, and (r 8% b) € © = (—1,1) x (0,00) x RE.

Notice that assumption (A.5) is a necessary condition for uniform convergence
(in probability) of < log p(r, s2,b).

Next, we have to show that the probability limit of the modified log-likelihood
function is maximized at the true values.

We will first show that

N
. 1 ) -
pth%ooN;\Dp,i(paaaﬁ) = 07 (All)
1 N
plimN—woN;\I’UQ,i(puojuﬂ) = 07
1 N
pth—woNZzl:\I’ﬂ,z(pugzuﬂ) = 0.

Evaluating the terms of the modified log-likelihood equations at the true values
of the parameters, we obtain

Upilp” B) = €lp) + 2L, (4.12)
y T—-2 £Qs
) 2 - _ i 4
\I’UZ,Z(pJ ) Jﬂ) 20_2 20_4 Y
7 £ QX
\Pﬁ,i(pu UQuﬂ) = 0_2 .
Then
N
plimy_oo - ; V,i(p, 0%, 8) = €(p)+tr(QP(p)) (A.13)
= &'(p) = €&(p) =0,
N
. 1 9 T—-2 o?
pth%oo N ; \DUQ,i(p> o 76) = - 202 + ﬁtT(Q) = Oa
LN
pth%ooN;\Dﬂ,z(pa 0-27ﬁ) = _thHoo ZE & QX
where we have used that tr(QP(p)) = tr(P(p)) — (T — 1)"Y/'P(p)e = —£& (p)
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Finally, we have to verify that the Hessian of the probability limit of the
modified log-likelihood function is a negative definite symmetric matrix at the
true values of the parameters. This Hessian is given by

¢(p) — Dzt PQP) )

o o o2
MH = o ~I=2 o
E’
— 0 —=
We can rewrite M H as
€'(0) —tr(PpYQP(p) G2 0 —F 0 g
E —I=2 o | + g’ 0 S . (A14)
0 0 B
N el PV OT £p)
It can be shown that ( &le) tTg,l(Dp()p V@) %2_2 ) is negative definite
o2 T 204

symmetric for —1 < p < 1. When p = 1, this matrix is singular: ignoring the
powers of o, its diagonal elements are equal to —%(T — 2) and its off-diagonal
elements are equal to %(T — 2). Moreover, ¥,,, = 0 and ¥,,, = 0 when p = 1.
Thus when p = 1 the parameters p and o2 are not uniquely identified.

The 2 x 2 matrix obtained after eliminating the middle row and column from
the second matrix in (A.14) is also negative definite symmetric and hence M H is
negative definite symmetric when —1 < p < 1. O

The asymptotic distribution of the Modified MLE for the parameters in the

ARX(1) panel model (A.1) is given by

70\2MML - P
VN | G — 0% | = N (0,(MH)™ MIM (MH)™), (A.15)
ﬁAHV[L - ﬂ

where the Modified Information Matrix (M IM) is given by

tT(QPQp) + 22q2+‘72t2T(PIQP) _EI(P) Xige

02 02

MIM = —£0) =2 o |. (A.16)
’zqz 0 Ezqz
o2 o2

To derive MIM we have used the general result E((e;Me;)(;Mae;)) =
04(tT(M1)tT(M2) + tT(MlMQ -+ M{Mg))

An explicit expression for tr(Q PQP) can be found using Maple. It can easily
be checked that tr(QPQP) # —¢"(p) and therefore MH # —MIM.
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Proor or THEOREM 2.15

The conditional AR(1) panel model can be rewritten as

Yi — Y = @, (P)in — pil + P(p)ei, i=1,.., N, (A.17)

where ¢ (p) and P(p) have been defined in the main text.

Recall that V(p) = 0*P(p)L(p)’. The Conditional ML estimators for p and
0? in the conditional AR(1) panel model are defined as the maximizers of the
conditional likelihood function sz\il Lo(yi — vi—1|Yi1 — [, Yin1), where g, 1 — fi; is
a sufficient statistic for y; 1 — p;. This sufficient statistic is given by

1
T-1

Jin — by = (@ V0 )T OV Y — yiae) = VP(p) "y — yint). (A18)

The following results are easily verified:

(Y = Yi,-1) — By — Yi,-119i1 — i, yin) = P(p) Qe

Var(Gig — filyin) = 7502,

Cov(y; — Vi1, Uin — [lyin) = 72502P(p)e,

Var(yi — yi,1lfia — i, yi1) = 0*[V(p) — 75 L(p)uL(p)] = a*P(p) QL (p)',

and £;QL(p)'[L(p)QL(p)']” L(p)Qei = £Qe:.

It follows that the conditional likelihood function is equal to the joint normal
density of the P(p)Qs;, i =1,...,N.

The Conditional ML estimator for p based on Hfil Lo(yi — yi—1|9i1 — s Yi1)
is inconsistent, because the probability limit of the conditional likelihood is not
maximized at the true value p. This can be seen by comparing the probability
limits of the conditional likelihood equation for p and the modified likelihood
equation for p when both are evaluated at the true values of the parameters.The
difference between them is &'(p) + %dip log |P(p)QP(p)'|" = f(p) # 0, where | X|*
is the product of non-zero eigenvalues of the matrix X. Since the Modified ML
estimators for p and o2 are consistent, it follows that the Conditional ML estimator
for p must be inconsistent. O

Notice that the Conditional MLE for p is different from the Within MLE/
LSDV estimator for p, which however is also inconsistent.
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B. Results for section 3.

CONSISTENCY OF THE REMLE FOR THE CONDITIONAL AR(1) PANEL MODEL:

This ML estimator is defined as the maximizer of a product of proper density
functions. This likelihood function does not involve any incidental parameters.
Consistency of the REMLE therefore follows by standard arguments. Neverthe-
less, it is interesting to see that the asymptotic first order conditions are satisfied
at the true parameter values:

Recall that u; = v;t + €;, where both v; and g; are iid., with E(y;1v;) = 0,
and E(y;16;) = 0, [and F(vig;) =0], Vi€ T. Let ¥ = E(u2 D=0l + o,
Then E(y; e uz) = 0, since E(y; Y y) = Eftr(2! wiy; 1) =

01 pp
- Ugug  Uup + puruy e s 15 0 0 0 1
1 _ 1
Etr] X 0 Uuius U2U3+pU1U3 =tr| XX 000 0
=0.

It is also easily verified that E(y;1/% " u;) = 0, Etr(uu} — 2)8820_21)] = 0, and
E[tr(ua, — $)250)] = 0.

2
0o

PrROOF OF THEOREM 3.1

The FE (Quasi) MLE for {p, 0} in the conditional AR(1) panel model is based
on the (quasi) likelihood function corresponding to the following (auxiliary) model

Yi — Yl = p(Yi—1 — Yi1t) + ui, (B.1)

where u; = —(1 — p)vi1e +&; ~ N(0, (1 — p)?o2u + o).

Recall that v;; = y;1 — p;. We assume that —1 < p < 1, o? > 0, and that
assumptions SA and RFE1 hold. Notice that if p = 1, the term v; = —(1 — p)v;;
would vanish and the parameter 02 = plimy_.cc + va L v#; would also vanish.

It is convement to reparametrize the auxﬂlary model, that is, to replace
(1-— )2 by & (7 . Furthermore, let ¥ = E(u;u}) = (7 L —1—02]T 1, Ayz =Y — Yial
and Ay27,1 = y;—1 — Yi1t- Then the (quasi) log-likelihood function is given by

N _
logl, = — N(T—l)logZW—Elog’Z’ (B.2)

MIH N[ =

N
ZAyz pAy;,1)'S H(Ay: — pAyi,1).
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2
v

After noting that X equals 02Q + (02 + (T — 1)&

ﬁu’ , it follows by applying some classical matrix algebra results from the panel

data literature that £~ = $Q+W{1ﬁ%ﬁm’ and ‘i‘ = 2= (0 +(T-1)57)
(see e.g. Hsiao (1986)). These results allow us to rewrite the likelihood function
as

1
)7, where Q = I 1 —

logL = —%N(T —1)log 2w — w log 0 — %log(a2 +(T - 1)52)
N ~ ~ ~ ~
sy (Ay; — pAy; 1)’ Q(Ay; — pAy; 1) (B.3)
i—1
1 1 &, X X )

i=1

To prove consistency of the FE(Q)MLE, we will verify the conditions of the-
orem 4.1.1. in Amemiya (1986). The main difference with a proof for standard
ML estimators is that the v;; are not i.i.d. but satisfy RFE1.

We can express Ay; 1 in terms of v;; and ¢,
Ayi—1 = Pu(p — 1)(yi1 — ;) + Pz, (B.4)

where the matrix P is defined in (A.2).
Next, we can rewrite the (quasi) log-likelihood function using that

ﬁyi — Tﬁgirl =(p— T)Ey,-7_1 +vit+eg = (B.5)
[(p—7r)Pe+i](p— 1) (yix — ;) + [(p— )P + I]e.

It can easily be seen from (B.5) that the (quasi) log-likelihood function, divided
by N, converges uniformly in probability if and only if assumption RFE1 holds.

We note that one would obtain the same probability limit of the (quasi) log-
likelihood function if the v; ; were i.i.d. normal with E(v;1) = 0, E(v?,) = 02, and
E(v;16:;) = 0. In that case we would have a standard ML estimation problem. It
immediately follows that the probability limit of the (quasi) log-likelihood function

attains a uniquely maximum at the true values of the parameters. 0

It is interesting to see that the probability limit of the (quasi) log-likelihood
function is indeed maximized at the true values of the parameters, despite corre-
lation between the y; 1 — v;1¢ and the u;:
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First, plimy .o % Ziil zy;,li_lui =

plimy o SV tr[i_luiﬁygﬁl] =tr | 2712

O O O O
O OO
O O =D
O R

cf the likelihood equation for p for the REMLE given above.
Furthermore, it is obvious that plimy_,c SOV [t (s, — i)%)] =0, and

plimy_ o0 % Zf\il[tr(uzu; — f]) 68%_21 )] = 0.

A COMPARISON OF THE MODIFIED MLE AND THE FEMLE FOR p:

We will assume that u; = v;e +¢&; ~i.i.d. N(0, ZN]), where ¥ = 512#’ + o?Ir_, with
7, = (1= p)*os.

The Modified ML estimator is a solution of the modified likelihood equations for
p and o2, which are given by:

5/(/)) + %% i\il(yz — pyi—1)'Qyi—1 =0, and
o—2 ?+ 02 N ij\il(yi - Pyz',—l)/Q(yz' - pyi,fl) =0,

where £(r) = ﬁ tT:_lz T’tl’trt.

The Fixed Effects (Quasi) ML estimator is defined as the global maximizer of
the (quasi) log-likelihood function given in (B.3). The corresponding likelihood
equations for p, o2 and 572) are given by:

alogL a ~
ZAyz LAy - pAy; 1) =0, (B.6)
dlogL N(T —2) N 1 N B . N
002 a 202 2~2 + 53 204 ;(Ayl pAyz,—l) Q(Ayz pAyz,—l)
1 1 K. N
- / A ;— A i 2 B
+254T—1;[L( Yi — pPAY;—1)] (B.7)
=0
and N
0log L N(T -1) 1 -
- A ? A i = 0, B.&
5 25 25" ;M yi — pAY;, 1)) (B.8)



where 5> = 024 (T —1)7-. We cannot solve this system of first-order conditions of
the maximum likelihood problem analytically, but we can simplify it. This yields
the following system of equations:

(% 2 Ay [FHT = 1)Q + 0?1 Ay; 1)]p =
N ZL(ﬁyé,fl[Nz( 1HQ +o? ]Ayz)
o=y w S Ay — pAyi 1) Q(Ay; — pAyi 1) =
(T—lz)% Zﬁil(yi = pYi, 1) QY — pYi, 1),

2

and 7, = T-12N Zz [ (Ays = pAy; 1) — ﬁ
When T = 3, it is easily verified that Dya; = Prearn and Gaar = 0 rmarL-
When T > 4, the Modified MLE for p and the FEMLE for p differ, because
~ Zz 1 Ayz 1(Ayz PAZ/z,—l) # [ z,FEAIL(p)](T - 1)5 (P)

We will now compare the limiting variances of the Modified MLE and the
FEMLE. The asymptotic variance of the Modified MLE was derived in the proof
of Theorem 2.14. in appendix A. To derive the limiting variance of the FEMLE,
we will use that Ay; _; = Pu(p—1)(yi1 — ;) + Pe; = P(vi+e;) (see (B.4)). Then
the following results are easily obtained:

E[(Ay;_1)S Y Ay; )] = o2r(PS1P) + 52/ PSP,
E([/(Ay; — pAy; 1)) = (T — 1)57,
E[(Ayi — pAyi 1) Q(Ayi—1)] = E[;QP(v1 + £;)] = o*tr(QP) = —o%¢(p),
and B[/ (Ay;_1)(Ay; — pAy; 1)'t] = B[/ P(vit + ;) (vie + ;)] =
(T —1)52 + 02/ Pr = 52/Pr = 5*(T — 1)€'(p).
Let & = (p 0 32). Then the limiting variance of the FEMLE for 6 is given by

3 9”log L ‘i ‘7{122 1 V131
V(ZT’(NO'E)(SFEA[L) = NE[—W]il = ‘/12 ﬁ + %5 ot
Vs =L (T-1)?
3 5t 257

where Vi = o%tr(P'S1P) + 62/ PSP = o2r(QP'S1P) + Ta—le’P’i*lpb,
—5€(p) + € (o), and Viy = & (T — DE(p)

If uj = vit +¢; ~ i.a.d. N(0,X), then the FEMLE attains the Cramér-Rao
lowerbound for the conditional AR(1) panel model with (restricted) fixed effects
and is therefore asymptotically efficient. B
When T'=3 and —1 < p < 1 (and u; ~ i.i.d. N(0,%)), it is easily verified that
u; ~i.i.d. N(0,3)), one can use Maple to verify that Var(Pya) > VarBrpa)-
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When p tends to one, the variances of Dy, and prp,, explode:
limyp Var(py) = oo, and limyyy Var(ppgy,) = oo. Thus both the Modi-
fied ML estimator for p and the FEML estimator for p are very imprecise near
the unit root. In the proof of Theorem 2.14 we have seen that when p = 1 the
probability limit of the Hessian of the Modified log-likelihood function, M H, is
singular, which means that the parameters p and o2 are not uniquely identified
in this case. Similarly, we can easily show that Var(N 05§ FEML) 18 a singular
matrix when p = 1. In that case 62 = 0, &° = 02 and © = o2I. Moreover,
tr(P'P) = LT — 1)(T — 2) and (1) = (T — 2). These properties of p,,,;, and
Prey near and at the unit root are consistent with results in Kruiniger (2000b),
namely that all the first and second moment conditions for the conditional AR(1)
panel model are weak near p =1 and do not identify the unit root.

When the assumption that u; = vt + &; ~ i.i.d. N(0,X) does not hold, the
limiting variance of EFEQ az takes the form of a sandwich formula, H'GH™!,
where H is the probability limit of the Hessian and G is the probability limit of
the outerproduct of the gradient of the quasi log-likelihood function (cf MaCurdy
(1981b)). In this case only the OFECGMM estimator is still asymptotically ef-
ficient and the FEQMLE for p and ¢ may asymptotically now be less efficient
than the Modified MLE for these parameters. Furthermore, the middle part of
the sandwich formula will in general depend on fourth order moments of v; and
ei¢. On the other hand, the limiting variance of the Modified MLE still only de-
pends on the second moment of v;, which one may consider as an advantage of the
MMLE over the FEQMLE if one is only prepared to make minimal assumptions
about the fixed effects (like assumption RFE).
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C. Proof for section 4.

We will prove that the FGLS estimator for the static model with fixed effects is
invariant under different within transformations of the data. It suffices to show
that

K'(KVK')"'K = Q(QVQ)~Q (C.1)

for each (T'— 1 x T') matrix K such that K¢ =0, and rank(K) =T — 1.
PROOF

Define the (7' x T') matrix H as VQ + [0 ¢|, and let D be the (7' — 1 x T) first-
difference matrix.

Note that span(V Q) = span(VD'), because span(Q) = span(D’). Moreover,
VI[D' 0] 4 [0 ¢] is a non-singular matrix, i.e. VD'z1 + 120 =0 21 =0 A 29 =0,
because D(V D'z + wxs]) = DVD'zy =0 21 =0, and tzg = 0 < z9 = 0. Tt
follows that the matrix H is nonsingular.

After pre- and postmultiplying (C.1) by H, we obtain QVK'(KVK')"'KV(Q =
OV Q.

Define G’ = KV'/2. Then QVK'(KVK')'KVQ = QV'2G(G'G)'G'V1/2(Q.
Noting that span(G) = span(V/2K") = span(V/2Q), we conclude that
QV2G(G'G)'\GVI2Q =QVQ. O
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