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ABSTRACT

This paper investigates the performances kernel-based with and without prewhitening and
the parametric heteroskedasticity and autocorrelation consistent (HAC) covariance matrices
in panel data models. A Monte Carlo study is conducted to evaluate effects of kernel choice,
data-based bandwidth selection, and prewhitening on the HAC covariance matrics in finite

samples for panel data models.
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1. INTRODUCTION

This paper is the first step in understanding how to construct the heteroskedasticity
and autocorrelation consistent (HAC) covariance matrices in panel data models. An im-
portant development in panel data models has been the modelling of serial correlation. To
account for serial correlation, researchers often assume a particular form for serial correla-
tion in the model, e.g., Hause (1977, 1980), Lillard and Willis (1978), Anderson and Hsiao
(1982), Berry et al. (1988), Baltagi and Li (1991), Keane and Runkle (1998), Levitt (1998),
Karlsson and Skoglund (2000), Park and Sickles (2000), and Blundell and Bond (1999). All
these papers assumed a known form (e.g., AR(1) or MA(1)) for serial correlation to obtain
consistent estimators and related covariance matrix estimators. Hause (1977, 1980), Lillard
and Willis (1978), and Baltagi and Li (1991) used the generalized least squares estimator
(GLS), whereas Anderson and Hsiao (1982) considered a maximum likelihood estimation
(MLE) with normality. Karlsson and Skoglund (2000) and Skoglund and Karlsson (2001a)
considered the MLE in a two-way error component model when the time-specific component
follows an AR(1) or MA(1) process. Skoglund and Karlsson (2001b) introduced the serial
correlation of general form in the time effects as well as the error terms. They proposed a
maximum likelihood estimator and discussed a model selection procedure for determining
the orders of serial correlation and the importance of time and individual effects.

Theses estimators are consistent and efficient when the assumed form of serial correlation
is correct, and the related covariance matrix estimators are expected to perform well in finite
samples. However, in practice, no prior information about serial correlation is available. In
particular, the assumption of a common structure of serial correlation for all individuals are
overly strong and are likely not to hold in practice. It is a rule rather than an exception that
degrees of serial correlation will vary across individuals. Any misspecification of serial cor-
relation may lead to misleading conclusions in estimation, inference and hypothesis testing.
This is so even when estimators remain consistent (e.g., the OLS for the static panel models),
because in general the covariance estimators that incorporate the assumed serial correlation
will be not consistent. It is important to develop procedures that are robust to serial cor-
relation of unknown form. This paper considers a general panel model for the error terms
that may have heterogeneity and serial dependence of unknown form. More importantly, we
propose a class of HAC estimation of covariance matrices used in panel data.

HAC estimators are not as often used in panel models as in time series, but attention

to this important issue has been increased over the last few years. Over the long time in



the panel literature, various strong assumptions imposed render it unnecessary to estimate
HAC estimators. In the related literature, Kiefer (1980), and Arellano (1987) are not directly
concerned with the HAC but do touch on a number of related issues on covariance estimation.
Kiefer (1980) proposed a within-GLS estimator with arbitrary intertemporal covariance,
whereas Arellano (1987) suggested a simple method for obtaining robust estimates of the
standard errors that allow a general covariance matrix. In a dynamic panel model with
small time dimension, 7', and large cross-sectional dimension, n, Arellano and Bond (1991,
p. 279) proposed a heteroskedascity consistent covariance matrix which is robust to general
heteroskedasticity over individuals and over time but is not robust to serial correlation. Such
estimators will not be valid when there exists serial correlation of unknown form. Kezdi
(2001) examined the within estimator with short time series. Kezdi showed serial correlation
in the error terms and regressors will induce severe bias in the conventional standard error
estimates in panel data models.

Recently, HAC estimators have been used in nonstationary panels, e.g., Kao (1999), Kao
and Chiang (2000), and Phillips and Moon (1999). These authors use the kernel estimators
developed for time series models. Often, a data-driven bandwidth is determined as a function
of T only. As will be seen below, such a procedure, although optimal for time series models, is
not optimal in the panel context. In particular, it oversmoothes the HAC estimator because
it does not take into account the additional smoothing provided by n. This is an undesirable
feature because it is well-known that kernels often tend to underestimate the covariance
matrixes and undersmoothing will lead to further downward bias. Our procedure will take
this into account and the results are optimal for panel models.

In fact, HAC estimators are equally important in panel models as in time series models.
For example, in static panel models, the within estimator is still consistent when there
exists serial correlation of unknown form, but the standard covariance matrix estimators
that assume no serial correlation will be invalid. In this case, the use of conventional ¢-tests
and F-tests will lead to misleading conclusions, e.g., Bhargava et al. (1982, p.545).

Estimation of HAC covariance matrices is a long-standing problem in time series econo-
metrics, e.g., Newey and West (1987, 1994), Andrews (1991), Andrews and Monahan (1992),
den Hann and Levin (1998), and Hong and Lee (2000). Leading examples in panel contexts
that may require using HAC estimators are estimation of asymptotic covariance matrices of
least square estimators in linear, nonlinear and unit root/cointegration regression models, of
two-stage least squares, three-stage least squares, quasi-maximum likelihood and generalized
method of moment (GMM) estimators. Such covariance matrix estimation is important for

confidence interval estimation, inference and hypothesis testing in dynamic contexts. To



represent a covariance matrix by a spectral density matrix at frequency 0 and to estimate it
by nonparametric kernel methods was suggested by Brillinger (1975, p.184; 1979), Hansen
(1982, p.1047) and Phillips and Ouliaris (1988), among others. Various kernel-based covari-
ance estimators have been proposed. These include Domowitz and White (1982), Levine
(1983), White (1984), White and Domowitz (1984), Newey and West (1987, 1994), Gallant
(1987), Gallant and White (1988), Kool (1988), Andrews (1991), Andrews and Monahan
(1992), Hansen (1992), De Jong and Davidson (1999), and Xiao and Linton (2000). Andrews
(1991) and Newey and West (1994) propose some data-driven bandwidth choices suitable for
covariance matrix estimation, making the kernel methods operational in practice. Andrews
(1991) derives the optimal kernel—the Quadratic-Spectral (QS) kernel over a class of kernels
that generate positive semi-definite covariance estimators. den Haan and Levin (1998, 2000)
also propose an autoregression-based covariance estimator.

The bulk of the problem is the difficulty in estimating a spectral density matrix at
frequency O when it has a peak there, which can arise due to strong dependence. It is
well-known that positive autocorrelation is apt to entail a mode in the spectral density at
frequency 0, and strong autocorrelation yields a peak at frequency 0. Kernel estimators
often tend to underestimate the peak, leading to overly narrow confidence intervals and
liberal tests. In fact, Priestley (1981, pp.547-556) shows that the modes of the spectral
densities of some low order AR and ARMA processes, whose autocorrelations decay to 0
at an exponential rate, are still underestimated even if some undersmoothing bandwidths
are used. Spectral peaks often arise in economic time series, due to seasonalities, business
cycle periodicities and strong dependence. Cochrane (1988), for example, argues that for
economic data, low order ARMA procedures tend to yield poor estimates of infinite sums
of autocorrelations (i.e., the long-run variance), because the autocorrelation function often
is positive and decays slowly. Granger (1969) points out that the typical spectral shape of
many economic time series is that it has a sharp peak at frequency 0 and decays to 0 as
frequency increases. For such time series, kernel methods may not work well.

Because of the unsatisfactory finite sample performances of the kernel-based covariance
estimators, it has been emphasized in the literature (e.g., Newey and West 1994, p.632) that
extensions or refinements to the existing kernel methods should be a priority for further work.
More reliable sampling distribution theory and better covariance estimators are required for
the statistics used in economic and financial time series analysis. To our knowledge, however,
few progress has been made so far. The most noticeable progress is Andrews and Monahan’s
(1992) prewhitening procedure. Prewhitening is a technique aimed to improve the accuracy
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spectral estimation procedures. The idea is to “flatten” the spectral density by passing
the original series through a filter so that its output has a relatively flat spectrum. A flat
spectrum is much easier to estimate and the corresponding kernel estimator is less sensible to
the choice of a bandwidth. Andrews and Monahan’s (1992) prewhitening kernel estimator is
effective in reducing the bias, and leads to considerably better sizes for related test statistics.
In the meantime, it is also found that prewhitening inflates the variance and may lead to
a larger mean squared error (MSE) than the kernel estimator without prewhitening (see
Andrews and Monahan 1992, Newey and West 1994, p.634).

Our contributions in this paper is that we compare the finite sample performances of
kernel-based estimators: nonparametric with and without prewhitening and parametric
method of de Haan and Levin (2000) in the panel contexts.

In Section 2, we describe the framework in which estimation of heteroskedasticity and
autocorrelation consistent covariance matrices in panel data of interest. In Section 3, we
report the Monte Carlo results. Section 4 provides a concluding remark and directions for

further research. Unless indicated, all limits are taken as the sample size n — co and T" — oc.
2. MODEL

To motivate the problem, we first consider an two-way error component panel model with

a possibly heteroskedastic and autocorrelated disturbance error
Yie = g+ X, 80 + 1; + M + Vit t=1,...T,i=1,.,n nT €L (2.1)

where Y, is a scalar, X;; is a p X 1 vector of explanatory variables that may contain lagged
dependent variables Y;; , (p,h € ZT), ap is an intercept, [, is a p x 1 vector of the slope
parameters, p, is the individual effect, ); is the time effect, and v;; is the error term. We
allow fixed effects or random effects. Throughout, we assume T; = ¢; T for some integer T
and ¢; € [c,C]. Thus, we permit unbalanced panel data. Moreover, we allow Y;;, X;;, ag and
By to depend on both n and T. (For notational simplicity, we suppress such dependence.)
Throughout, we assume the following conditions on (2.1):
Assumption A.1: {Yj;, X/}’ are stochastic processes such that (i) for each i, {v;} is
covariance-stationary with E(vy) = 0, E(v2) = 0? € [¢,C] and E(v5) € [c, C]; (ii) there is
no spatial dependence in {v;}, i.e., v; and v;s are independent for all ¢ # j and all ¢, s; (iii)
the individual and time effects, i, and A, can be stochastic (random effects) or deterministic
(fixed effects).

No dependence assumptions on {y,} and {\;} are imposed, because they will be differ-

enced out in the construction of our estimators. We thus allow {\,} to be serially correlated
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if \; is random, and {y;} to be spatially correlated if ,; is random. We also allow a certain
degree of heterogeneity in panel data—{Y};, X/,}' need not be stationary for each ¢, and the
errors {v;; } may have different variances across i. In particular, we allow some nonstationary
processes. One example of nonstationary panel time series is the deterministic trend process
(e.g., Kao and Emerson 1999)

Vie = @+t 4+ 99t% + -+ P+ g+ Ao+ vir

This is covered by (2.1) with X, = [t/T, (¢t/T)?,...,(t/T)") and 0 = (T'y,,...,T"y,)". Note
that X;; and 3, depend on T. Another example is the panel cointegration process (e.g.,
Phillips and Moon 1999, Kao and Chiang 2000):

Y;'t:Oé‘i"')/Zit‘}‘,ui‘i‘/\t‘i‘Uit,

where Z;; = Z;y 1 + ey, {ei} is I(0) for each ¢, and {e;;} may or may not be correlated with
{vy}. This process is also covered by (2.1) with X;; = T7'Z;; and 3, = Ty. We will provide
regularity conditions on transformed variables {X;;} and transformed parameters £.

The parameter vector 3, in (2.1) can be estimated by the popular within estimator
-1

n T
B = [ZZ(Xit_Xi_Xt+X) (X — X~ X+ X)

i=1 t=1

(2.2)

)

n 1;
><[ZZ(X“—XZ-—XﬁX)(Yit—fé—fft+?)

i=1 t=1

where X; = T, * Zthl X, Xe =n 130 Xpand X = (nT3) 1307, Zle X;;. The variables

Y;, Y, and Y are defined in the same ways. Its asymptotic covariance matrix is

~ . -1 . N
AVAR [\/nT(ﬁ - 50)] - (plim MnT) plim O,y (p lim MnT) , (2.3)
where
N 1 & I ~
My = T Z Z Xt Xy
i=1 t=1
1 n T, T; _ _

Qur = — Xit@it(@isX' ),,

Xy =Xy—X,— X, + X, and 0y = vy — U; — U, + 0. To estimate (2.3), plim Q7 is more
challenging to estimate.

More generally, for many panel estimators /B, we have
(M Qe M) N RT (B — By) > N(0, 1), rez (2.4)
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where M, is a nonstochastic » X p matrix, [, is a r X r identity matrix, and

n Ti

T;
plim O = —= 33 S ViV 6o (2.5)

i=1 t=1 s=1

for some stochastic p x 1 vector process Vi;(3,). For example, the function V;;(/3,) can be the
moment function in GMM estimation, e.g., Arellano and Bond (1991), Arellano and Bover
(1995), Ahn and Schmidt (1995, 1997), Hahn (1997), Blundell and Bond (1998), and Im et
al. (1999). Also the HAC estimators proposed in this paper can be used in many other panel
models. For example, the panel cointegration tests and panel cointegration estimation (e.g.,
Kao, 1999; Kao and Chiang, 2000, Phillips and Moon, 1999) require the HAC estimation for
the long-run variance matrix of the error terms in the models. In an extensive simulation
study, Kao and Chiang (2000) pointed out the panel fully modified (FM) estimator and
t-statistic based on FM estimator are severely downward biased due to the failure of the
kernel-based HAC estimation for the long-run variance covariance matrix. More seriously,
Kao and Chiang also pointed out that the FM t-steatitic become more negatively biased as
the cross-sectional dimension, n, increases. All these indicate there is much to be done on
the HAC estimation in panel data models. For the panel cointegration test estimation (e.g.,
Kao and Chiang, 2000, p. 187; Phillips and Moon 1999, p. 1084), Vi;(8,) usually takes the

form:

Vie(B) =

Yi — X8
&—%1l
Once the estimates of Vi(8,), Vit (8,) were estimated, the HAC estimator of the long run
covariance matrix was estimated by
o1 (1 Z 1 d T A A
shggjigmmmmnfgkngwwmmm+m¢@m@”,

where B is the within estimator or the FM estimator and w,,; is a weight function or a kernel.
The distribution results for the FM estimator in Kao and Chiang (2000) and Phillips and
Moon (1999) require y/n (Q — Q) does not diverge as n grows large. However, Q-0 may

not be small when T is fixed. It follows that \/n ((AZ — Q) may be non-negligible in panel
data with finite samples. It may be one of the reasons for the poor performance for panel
FM estimator. For GMM estimator in panel data, V;,(3,) usually takes the form:

Va(Bo) = Zun (Y — X8,

where Z;, is a vector of instruments with £ {Zit (fﬂt - X ﬁo)} and Z;, (ﬁt - X 50) may have

serial correlation and heteroskedasticity of unknown form. However, for the GMM is the
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dynamic panel models, one must be careful about how to choose the valid instruments when
the serial correlation has the unknown form. For example, the consistency of the GMM
in Arellano and Bond (1991) that use the lagged dependent variables be the instruments
requires no second-order serial correlation in the first difference residuals It seems that if
the error terms are serially correlated with the unknown form, then one cannot choose the
lagged dependent variables to be the valid instruments in the dynamic panel models. In
stead of using lagged dependent variables, we may have to use exogenous variables to be
instruments.

Usually, M, r is relatively simple to estimate, often by its sample analog. Our focus is

estimation of §2,7. When V;(5,) is a second order stationary process with mean 0, we have

o o = i Z %=0=lim o Z 2nfi(0 (25)
where -
fi(0) = (2m)~" Y ()
l=—00
is the px p spectral density matrix of V;;(3,) at frequency 0, with I';(1) = E[Vi:(8o)Vit—1(Bo)']-

Thus, €2; can be consistently estimated by a nonparametric spectral density estimator at
frequency 0, as suggested in Brillinger (1975), Hansen (1982) and Phillips and Ouliaris
(1988) among others. Newey and West (1987) propose a convenient positive semi-definite

kernel estimator for €2; :
Bn

Qvw = Y K(j/Bir)Tir(l), (2.7)

=B,
where K (z) = (1 — |z]|)1(|z| < 1) is the Bartlett kernel, 1(+) is the indicator function, B;r is

a lag truncation parameter depending on the sample size T,

fiT(l)_{ T VBV (B, =017 -1, 2.9
IZt 1-1 ”Jrl(ﬁ)v (6)/7 l= _17"'7_(T_ 1)7

is the sample autocovariance matrix of V}t(g), and B is a consistent estimator of 6.

Andrews (1991) consider a general class of estimators

M’ﬂ

K(j/Ba)Tir (1), (2.9)

=1—

where K : R — [—1, 1] is a general kernel, and B,, a bandwidth. Examples of K (-) include
Bartlett, Parzen, QS, Tukey-Hanning, and truncated kernels (e.g., Andrews 1991). When



K(-) has infinite support, B;; is no longer a lag truncation parameter. Andrews derives
the optimal kernel —the QS kernel, that minimizes an asymptotic MSE; he also proposes
a parametric “plug-in” data-driven bandwidth choice for B;r. Based on Andrews (1991),
Phillips and Moon (1999, p. 1084) proposed a HAC estimator by taking the average of Q;a

over 1:
1 n
Q=— E Q.
n “
=1

Phillips and Moon (1999) verified the consistency of Q) by assuming By, n,T — oo with
Bir/T — 0. Newey and West (1994) propose a nonparametric “plug-in” data-driven choice
of By for their Bartlett kernel-based estimator Q;xw. Andrews and Manahan (1992) further

propose a prewhitening kernel estimator

-A@)] (2.10)

where AZ(/B) is a filter based on a Vector AutoRgression (VAR) approximation for {V;t(g)}

and

~

= Zt:lJrl zt+l(6)v;zr(6)/v l= _17 ) _(T - 1)

is the sample autocovariance function of the VAR residual V;;F(B)

f’+(l)—{ 121& I+1 zt( ) ( )/: [=0,1,...,T -1,

Extensive simulation experiments in the literature show that kernel estimators perform
poorly in finite samples when there is strong autocorrelation. They often lead to strong
overrejection in testing and too narrow confidence intervals in estimation. This is true even
if the (infeasible) finite sample optimal bandwidth parameter is used. It appears that it is
the very nature of the kernel method, rather than the choice of a bandwidth or a kernel, that
attributes its poor performance in finite samples when the data display strong dependence.

In our opinion, the main reason for the poor performance of the kernel estimators is that
the spectral density has a peak at frequency 0 when there exists strong autocorrelation, but
the kernel method, as a local averaging method, tends to underestimate the peak. Andrews
and Monahan’s (1992) prewhitening procedure alleviates this downward bias substantially
and thus gives better test sizes. However, it also inflates the variance and thus may not
dominate the same procedure applied to the original series in terms of MSE criteria. Below

we study the finite sample properties of the various HAC estimators in the panel context.
3. MONTE CARLO EVIDENCE

We now compare the finite sample performances of three HAC covariance matrix es-

timators: nonparametric kernel-based with and without prewhitening estimators and the
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parametric VARHAC estimator. We consider two sets of simulation experiments: the first
basically follow the designs of Baltagi and Li (1995), Andrews (1991) and Andrews and
Monahan (1992), and the second are based on an empirical study on the U.S. juvenile crime
rates by Levitt (1998).

For the first set of experiments, We consider the following DGP for the panel data model:

Y = o+ BXy+ p; + vir,
Xi = 0.5X¢t_1 + Nt

iid

where 7, w U[-0.5,0.5], y; ~ N(0,0%), @ = 5 and § = 0.5. The initQial values X, were
chosen as in Baltagi et al. (1992). We let 0% = 07 + 07 =20 and 7 = 24 take five different
values, (0,0.4,0.8). The value of 7 measures the relative strength of random effects (when
7 = 0, there is no random effect). We note that a similar DGP has been used in Baltagi
and Li (1995) and Bera et al. (2000). We consider three sample size combinations: (n,7") =
(25,32),(50,64), (100,128). To examine the performance of kernel-based HAC estimators,
we consider the following processes for {v;;}, where {v;} follows an ARMA (py, qo) process,
ie.,

Po q0
vie =Y _pi—1+ Y mer+en {a} ~TID.N(0,0%).

=1 =1
In our simulation, we consider ARMA(1,1), ARMA(2,2) and ARMA(4,4). For ARMA(1,1),
we set the AR parameter p, = 0.6 and 0.9. For ARMA(2,2) and ARMA(4,4), we set the
values of {p,} such that their sum equals to 0.6 and 0.9. For each model, we set each MA
parameter 7, = 0.6 or 0.9. We also set 0> = 1 in each model.

We compare the following covariance estimators: Newey and West’s (NW, 1994) Bartlett
kernel-based estimator, Andrews’ (1991) QS estimator, and the VARHAC estimator of den
Haan. For NW, we select the data-driven bandwidth using Newey and West’s (1994, pp.637)

nonparametric plug-in method. For QS, we select the data-driven bandwidth using Andrews’

p

(1991) parametric plug-in method based on univariate { AR(m,)},_; models, where the order

m,, is selected by AIC or BIC. The resulting estimator is denoted as QS(A) or QS(B). We also
use AIC or BIC, and obtain the estimator VARHAC, i.e., VARHAC(A) and VARHAC(B).
Alternatively, we also apply a prewhitening (PW) procedure to NW and QS: we first fit

~

a prehwitening VAR (m) model for {V,(5,,)} with the order m determined by AIC or BIC
again, use the resulting residual vector series {Vﬁ(ﬁn)} to construct NW and QS estimators,
and then recolor them. For NW, we only need to use AIC or BIC to select the order

of the prewhitening VAR(m) model. We obtain PW-NW(A) or PW-NW(B). For QS we
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apply the same order selection criterion to both the VAR (m) model for prewhitening and
the univariate {AR(m,)}._; models for choosing the plug-in bandwidth or the finest scale.
These are denoted as PW-QS(A) and PW-QS(B) respectively.

In order to study the potential heterogeneity in the serial correlation across the cross-
sectional units of the serial correlation in panel data for each case we study the following
five subcases:

ARMA(4,4) Alternatives:

\

( ARMA(4a4)a : Vit = —pPUit—q + Eit + NEit—1, 1= 17 ey T,
ARMA(4a4)b : Vit = PUs—q + Eit — NEit—4, 1= 17 ey T,
—PVit—4 + Eit + NEit—a, -:17"'727
Eit, =45+ yeeey Ty
t o (7.6)
it—4 T Eit — Eit—a, - 7"'727
ARMA(4,4)%: v, = { Promt e st 2
Eity Z:%+17"'7n7
—PVit—4 + €t + Eit—a, -:17"'727
ARMA(4,4)° - vy = PPit—4 t T 1Eit—a | ¢ )
PUi—1 + Eit — NEj—a, =75+ 1,..,n.

We estimate 5 by the within estimator B We examine the various estimators for the
asymptotic variance of /B We examine their biases, variances and MSEs.

We also examine the size of the ¢-test of
Hy: =0 V.S. Hy: =09,

The test is constructed using the within estimator B and the various covariance estimators.

Table 1 reports the bias, variance, MSE, and the size of the t test under ARMA (1,1)
for (n,T) = (25,32) with 7 = (0.0,0.4,0.8). The VARHAC(A) has the smallest downward
bias, then followed by QS(B), QS(A), and NW. As found in previous studies in time series,
the prewhitening estimators of PW-NW(A), PW-NW(B), PW-QS(A), and PW-QS(B) have
larger MSEs than non-prewithening methods. In general, QS methods have smaller biases
than their NW counterparts. For the size of tests, VARHAC(A) gains a better size than rests
of methods but has a largest variance. Also, QS methods have good sizes in contrast to NW
counterparts. The prewhitening methods, however, have relatively worse sizes than non-
prewhitening methods. On the other hand, biases of all methods reduce when the random
effect increases. This can be observed that MSEs for all methods tend to be smaller in
correspondence to decrease of 7. The sizes of tests show no signs of improvements even
though MSEs decrease. Tables 2 and 3 share the similar observations as found in Table 1.

The biases and MSEs, however, tend to become larger when the dimension of combination

10



of N and T increases for all methods. Meanwhile, the sizes of tests improves when sample
size increases for both N and T'.

The similar observations can be found in ARMA (2,2) and ARMA(4,4) cases from Tables
4 to 9. Furthermore, the biases and MSEs are relatively larger than those in ARMA (1,1)
cases. This indicates that estimated variances deviate more when the errors become much
more correlated.

In summary, we observe the following:

1) The VARHAC(A) estimator has a smaller bias and a larger variance than other esti-
mators. The MSEs of the prewhitening estimators are larger than those of non-prewhitening
methods.

2) For the size of the tests, the VARHAC(A) estimator outperforms other methods.

3) The prewhitening procedures enlarge MSEs.

4. CONCLUSION

As is well-known, a HAC covariance matrix is proportional to a spectral density matrix at
frequency 0, and can be consistently estimated by the popular kernel methods of Andrews-
Newey-West. When data displays strong dependence, the spectral density has a peak at
frequency 0. Kernels, as a local averaging method, tend to underestimate the peak. This
often leads to overrejection in testing and too narrow confidence intervals in estimation.
In this paper, the issues of bandwidth selection and prewhitening of estimating the HAC

covariance matrix in panel data models are investigated using Monte Carlo.
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Table 1: Bias, Variance, MSE, and Size of ¢ test under ARMA(1,1):(n,T)=(25,32)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.6589 21.7081 0.0022 0.2960 0.1760 0.0540
QS(A) -4.6350 21.4864 0.0028 0.2820 0.1560 0.0440
QS(B) -4.6334 21.4712 0.0028 0.2780 0.1510 0.0430
VARHAC(A) -4.3683 20.4186 1.3381 0.2200 0.1150 0.0310

0.0 VARVAR(B) -4.5212 20.5881 0.1465 0.2250 0.1280 0.0340
PW-NW(A) -4.7531 22.6346 0.0427 0.4450 0.3350 0.1470
PW-NW(B) -4.7615 22.6949 0.0224 0.4550 0.3420 0.1530
PW-QS(A) -4.7386 22.6031 0.1494 0.4310 0.3190 0.1460
PW-QS(B) -4.7472 22.5467 0.0111 0.4310 0.3100 0.1370
NW -2.7982 7.8308 0.0007 0.3100 0.1860 0.0630
QS(A) -2.7816 7.7380 0.0009 0.2810 0.1770 0.0480
QS(B) -2.7808 7.7339 0.0009 0.2810 0.1770 0.0430
VARHAC(A) -2.4941 7.7783 1.5593 0.2240 0.1330 0.0350

0.4 VARHAC(B) -2.7090 7.3973 0.0584 0.2300 0.1350 0.0430
PW-NW(A) -2.8542 8.1565 0.0096 0.4470 0.3260 0.1660
PW-NW(B) -2.8605 8.1859 0.0031 0.4440 0.3290 0.1780
PW-QS(A) -2.8432 8.1218 0.0382 0.4250 0.2970 0.1470
PW-QS(B) -2.8460 8.1062 0.0063 0.4180 0.2980 0.1400
NW -0.9324 0.8695 0.0000 0.3110 0.1920 0.0610
QS(A) -0.9271 0.8597 0.0001 0.2490 0.1490 0.0430
QS(B) -0.9270 0.8594 0.0001 0.2460 0.1460 0.0430
VARHAC(A) -0.8331 0.9842 0.2904 0.2200 0.1310 0.0430

0.8 VARHAC(B) -0.9001 0.8174 0.0073 0.2340 0.1310 0.0360
PW-NW(A) -0.9528 0.9082 0.0004 0.4370 0.3340 0.1660
PW-NW(B) -0.9542 0.9112 0.0001 0.4200 0.3070 0.1570
PW-QS(A) -0.9475 0.9005 0.0027 0.3750 0.2670 0.1250
PW-QS(B) -0.9542 0.9112 0.0001 0.4200 0.3070 0.1570

Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 2: Bias, Variance, MSE, and Size of ¢ test under ARMA(1,1):(n,T)=(50,64)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.8123 23.1584 0.0001 0.2770 0.1680 0.0550
QS(A) -4.8034 23.0725 0.0001 0.2700 0.1600 0.0530
QS(B) -4.8039 23.0780 0.0001 0.2690 0.1620 0.0500
VARHAC(A) -4.7777 22.8507 0.0243 0.2270 0.1280 0.0360

0.0 VARHAC(B) -4.7835 22.8828 0.0013 0.2160 0.1290 0.0260
PW-NW(A) -4.8532 23.5669 0.0134 0.4450 0.3350 0.1760
PW-NW(B) -4.8564 23.5969 0.0123 0.4830 0.3680 0.1950
PW-QS(A) -4.8581 23.6012 0.0000 0.4720 0.3510 0.1880
PW-QS(B) -4.8567 23.5878 0.0000 0.4660 0.3430 0.1770
NW -2.8877 8.3389 0.0000 0.2790 0.1580 0.0500
QS(A) -2.8823 8.3078 0.0001 0.2610 0.1490 0.0340
QS(B) -2.8825 8.3089 0.0000 0.2600 0.1500 0.0350
VARHAC(A) -2.8482 8.2487 0.1367 0.2180 0.1210 0.0180

0.4 VARHAC(B) -2.8674 8.2299 0.0078 0.2220 0.1060 0.0230
PW-NW(A) -2.9148 8.4961 0.0001 0.4560 0.3390 0.1670
PW-NW(B) -2.9161 8.5034 0.0000 0.4860 0.3510 0.1890
PW-QS(A) -2.9146 8.4947 0.0000 0.4750 0.3440 0.1760
PW-QS(B) -2.9137 8.4898 0.0000 0.4680 0.3360 0.1660
NW -0.9627 0.9269 0.0000 0.2900 0.1680 0.0470
QS(A) -0.9608 0.9232 0.0000 0.2490 0.1530 0.0410
QS(B) -0.9609 0.9233 0.0000 0.2500 0.1570 0.0410
VARHAC(A) -0.9444 0.9188 0.0270 0.2160 0.1240 0.0350

0.8 VARHAC(B) -0.9558 0.9142 0.0006 0.2130 0.1060 0.0260
PW-NW(A) -0.9718 0.9444 0.0000 0.4910 0.3520 0.1780
PW-NW(B) -0.9721 0.9450 0.0000 0.4510 0.3290 0.1860
PW-QS(A) -0.9665 0.9565 0.0223 0.4220 0.3130 0.1700
PW-QS(B) -0.9710 0.9429 0.0000 0.4150 0.3040 0.1690

Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 3: Bias, Variance, MSE, and Size of ¢ test under ARMA(1,1):(n,T)=(100,128)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.8733 23.7492 0.0000 0.2490 0.1310 0.0420
QS(A) -4.8716 23.7321 0.0000 0.2300 0.1270 0.0410
QS(B) -4.8718 23.7340 0.0000 0.2340 0.1290 0.0400
VARHAC(A) -4.8669 23.6876 0.0007 0.2030 0.1110 0.0310
0.0 VARHAC(B) -4.8668 23.6854 0.0000 0.2020 0.1030 0.0230
PW-NW(A) -4.8883 23.8951 0.0000 0.4230 0.3250 0.1540
PW-NW(B) -4.8893 23.9048 0.0000 0.4600 0.3430 0.1760
PW-QS(A) -4.8880 23.8924 0.0000 0.4380 0.3170 0.1580
PW-QS(B) -4.8877 23.8898 0.0000 0.4330 0.3070 0.1550
NW -2.9241 8.5504 0.0000 0.2370 0.1440 0.0440
QS(A) -2.9229 8.5434 0.0000 0.2260 0.1280 0.0350
QS(B) -2.9230 8.5440 0.0000 0.2270 0.1270 0.0360
VARHAC(A) -2.9206 8.5299 0.0000 0.1940 0.1050 0.0280
0.4 VARHAC(B) -2.9200 8.5265 0.0000 0.1970 0.1020 0.0240
PW-NW(A) -2.9330 8.6025 0.0000 0.4430 0.3260 0.1650
PW-NW(B) -2.9334 8.6051 0.0000 0.4500 0.3340 0.1700
PW-QS(A) -2.9328 8.6011 0.0000 0.4200 0.3080 0.1520
PW-QS(B) -2.9326 8.6001 0.0000 0.4160 0.3040 0.1480
NW -0.9748 0.9502 0.0000 0.2770 0.1470 0.0380
QS(A) -0.9743 0.9493 0.0000 0.2100 0.1160 0.0230
QS(B) -0.9743 0.9493 0.0000 0.2110 0.1160 0.0240
VARHAC(A) -0.9735 0.9478 0.0000 0.1850 0.0970 0.0110
0.8 VARHAC(B) -0.9734 0.9474 0.0000 0.2180 0.1010 0.0230
PW-NW(A) -0.9777 0.9559 0.0000 0.4750 0.3530 0.1770
PW-NW(B) -0.9778 0.9562 0.0000 0.4470 0.3180 0.1570
PW-QS(A) -0.9776 0.9556 0.0000 0.4180 0.2820 0.1380
PW-QS(B) -0.9775 0.9555 0.0000 0.4080 0.2780 0.1330
Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 4: Bias, Variance, MSE, and Size of ¢ test under ARMA(2,2):(n,T)=(25,32)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.8273 23.3048 0.0015 0.3190 0.1760 0.0550
QS(A) -4.8086 23.1250 0.0019 0.2950 0.1570 0.0410
QS(B) -4.8073 23.1118 0.0020 0.2910 0.1560 0.0410
VARHAC(A) -4.5029 21.7122 1.4374 0.2240 0.1220 0.0360

0.0 VARHAC(B) -4.6820 22.1005 0.1796 0.2460 0.1280 0.0430
PW-NW(A) -4.9011 24.0499 0.0290 0.4640 0.3400 0.1520
PW-NW(B) -4.9089 24.1140 0.0166 0.4610 0.3430 0.1560
PW-QS(A) -4.8947 24.0050 0.0471 0.4580 0.3290 0.1410
PW-QS(B) -4.8950 23.9913 0.0329 0.4510 0.3210 0.1420
NW -2.8987 8.4030 0.0005 0.3060 0.1860 0.0580
QS(A) -2.8858 8.3287 0.0006 0.2770 0.1780 0.0470
QS(B) -2.8854 8.3261 0.0007 0.2770 0.1780 0.0460
VARHAC(A) -2.6642 7.9949 0.8978 0.2290 0.1330 0.0290

0.4 VARHAC(B) -2.8113 7.9795 0.0765 0.2460 0.1390 0.0390
PW-NW(A) -2.9462 8.6665 0.0041 0.4370 0.3310 0.1620
PW-NW(B) -2.9440 8.6791 0.0120 0.4300 0.3180 0.1490
PW-QS(A) -2.9381 8.6427 0.0105 0.4150 0.3110 0.1640
PW-QS(B) -2.9362 8.6354 0.0139 0.4120 0.3050 0.1620
NW -0.9658 0.9329 0.0000 0.3020 0.1870 0.0540
QS(A) -0.9619 0.9254 0.0001 0.2490 0.1420 0.0500
QS(B) -0.9619 0.92532 0.0001 0.2480 0.1440 0.0500
VARHAC(A) -0.8072 1.4377 0.7868 0.2010 0.1160 0.0400

0.8 VARHAC(B) -0.9371 0.88521 0.0072 0.2370 0.1290 0.0350
PW-NW(A) -0.9809 0.9634 0.0014 0.4310 0.3170 0.1710
PW-NW(B) -0.9831 0.9666 0.0001 0.4240 0.3020 0.1490
PW-QS(A) -0.9796 0.9600 0.0004 0.3850 0.2620 0.1300
PW-QS(B) -0.9793 0.9595 0.0004 0.3800 0.2620 0.1250

Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 5: Bias, Variance, MSE, and Size of ¢ test under ARMA(2,2):(n,T)=(50,64)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.9428 24.4319 0.0001 0.2860 0.1710 0.0590
QS(A) -4.9345 24.3495 0.0001 0.2740 0.1720 0.0450
QS(B) -4.9355 24.3596 0.0001 0.2750 0.1710 0.0460
VARHAC(A) -4.9025 24.1024 0.0682 0.2400 0.1380 0.0280

0.0 VARHAC(B) -4.9135 24.1559 0.0130 0.2250 0.1290 0.0290
PW-NW(A) -4.9796 24.8149 0.0181 0.4410 0.3420 0.1810
PW-NW(B) -4.9835 24.8361 0.0012 0.4920 0.3690 0.2050
PW-QS(A) -4.9829 24.8298 0.0003 0.4800 0.3650 0.1990
PW-QS(B) -4.9825 24.8253 0.0002 0.4820 0.3580 0.1920
NW -2.9659 8.7970 0.0000 0.2880 0.1630 0.0500
QS(A) -2.9608 8.7665 0.0000 0.2600 0.1540 0.0450
QS(B) -2.9613 8.7693 0.0000 0.2620 0.1570 0.0420
VARHAC(A) -2.9352 8.6727 0.0574 0.2200 0.1290 0.0250

0.4 VARHAC(B) -2.9503 8.7054 0.0011 0.2220 0.1220 0.0240
PW-NW(A) -2.9885 8.9345 0.0037 0.4640 0.3520 0.1790
PW-NW(B) -2.9883 8.9358 0.0055 0.4910 0.3620 0.1930
PW-QS(A) -2.9845 8.9376 0.0304 0.4820 0.3510 0.1860
PW-QS(B) -2.9839 8.9342 0.0304 0.4760 0.3430 0.1790
NW -0.9887 0.9776 0.0000 0.2900 0.1760 0.0480
QS(A) -0.9871 0.9744 0.0000 0.2580 0.1460 0.0470
QS(B) -0.9872 0.9745 0.0000 0.2570 0.1460 0.0470
VARHAC(A) -0.9775 0.9646 0.0091 0.2220 0.1220 0.0360

0.8 VARHAC(B) -0.9834 0.9672 0.0001 0.2280 0.1110 0.0240
PW-NW(A) -0.9966 0.9932 0.0000 0.4830 0.3630 0.1930
PW-NW(B) -0.9970 0.9939 0.0000 0.4620 0.3380 0.1810
PW-QS(A) -0.9966 0.9931 0.0000 0.4480 0.3310 0.1700
PW-QS(B) -0.9964 0.9928 0.0000 0.4380 0.3280 0.1610

Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 6: Bias, Variance, MSE, and Size of ¢ test under ARMA(2,2):(n,T)=(100,128)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.9947 24.9473 0.0000 0.2420 0.1380 0.0430
QS(A) -4.9929 24.9286 0.0000 0.2250 0.1410 0.0410
QS(B) -4.9931 24.9315 0.0000 0.2300 0.1420 0.0440
VARHAC(A) -4.9893 24.8931 0.0000 0.2070 0.1190 0.0280
0.0 VARHAC(B) -4.9888 24.8885 0.0000 0.1910 0.0990 0.0260
PW-NW(A) -5.0088 25.0879 0.0000 0.4290 0.3140 0.1580
PW-NW(B) -5.0095 25.0951 0.0000 0.4690 0.3470 0.1830
PW-QS(A) -5.0086 25.0861 0.0000 0.4460 0.3270 0.1690
PW-QS(B) -5.0085 25.0852 0.0000 0.4460 0.3220 0.1670
NW -2.9969 8.9814 0.0000 0.2480 0.1420 0.0150
QS(A) -2.9957 8.9743 0.0000 0.2290 0.1260 0.0320
QS(B) -2.9959 8.9752 0.0000 0.2280 0.1270 0.0340
VARHAC(A) -2.9932 8.9593 0.0000 0.1970 0.1010 0.0290
0.4 VARHAC(B) -2.9931 8.9589 0.0000 0.1940 0.1080 0.0250
PW-NW(A) -3.0047 9.0285 0.0004 0.4460 0.3190 0.1630
PW-NW(B) -3.0056 9.0338 0.0000 0.4480 0.3230 0.1710
PW-QS(A) -3.0051 9.0309 0.0000 0.4290 0.3110 0.1470
PW-QS(B) -3.0051 9.0305 0.0000 0.4270 0.3120 0.1460
NW -0.9990 0.9981 0.0000 0.2700 0.1630 0.0430
QS(A) -0.9986 0.9972 0.0000 0.2350 0.1190 0.0220
QS(B) -0.9986 0.9973 0.0000 0.2340 0.1230 0.0220
VARHAC(A) -0.9977 0.9954 0.0000 0.1970 0.0960 0.0130
0.8 VARHAC(B) -0.9977 0.9954 0.0000 0.2110 0.0970 0.0230
PW-NW(A) -1.0018 1.0036 0.0000 0.4720 0.3460 0.1790
PW-NW(B) -1.0019 1.0038 0.0000 0.4500 0.3220 0.1720
PW-QS(A) -1.0017 1.0034 0.0000 0.4220 0.3080 0.1440
PW-QS(B) -1.0017 1.0034 0.0000 0.4200 0.3020 0.1420
Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 7: Bias, Variance, MSE, and Size of ¢ test under ARMA(4,4):(n,T)=(25,32)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.8564 23.5859 0.0008 0.3230 0.1840 0.0540
QS(A) -4.8842 23.4678 0.0010 0.2990 0.1600 0.0430
QS(B) -4.8435 23.4609 0.0010 0.2970 0.1590 0.0380
VARHACA) -4.5626 22.5929 1.7770 0.2410 0.1400 0.0430
0.0 VARHAC(B) -4.7836 22.9872 0.1042 0.2740 0.1750 0.0510
PW-NW(A) -4.9042 24.0722 0.0207 0.4520 0.3190 0.1310
PW-NW(B) -4.9060 24.0892 0.0203 0.4520 0.3260 0.1390
PW-QS(A) -4.8964 24.0161 0.0413 0.4380 0.3040 0.1270
PW-QS(B) -4.8981 24.0034 0.0119 0.4360 0.3080 0.1250
NW -2.9156 8.5011 0.0003 0.2970 0.1720 0.0520
QS(A) -2.9075 8.4537 0.0003 0.2920 0.1620 0.0470
QS(B) -2.9072 8.4522 0.0003 0.2900 0.1580 0.0490
VARHAC(A) -2.7460 8.3621 0.8223 0.2520 0.1470 0.0460
0.4 VARHAC(B) -2.8745 8.2976 0.0350 0.2770 0.1670 0.0510
PW-NW(A) -2.9412 8.6566 0.0058 0.4210 0.2970 0.1300
PW-NW(B) -2.9424 8.6657 0.0082 0.4260 0.3060 0.1470
PW-QS(A) -2.9246 8.6500 0.0000 0.4100 0.2970 0.1370
PW-QS(B) -2.9399 8.6490 0.0059 0.4140 0.2930 0.1320
NW -0.9714 0.9437 0.0000 0.2960 0.1800 0.0510
QS(A) -0.9691 0.9393 0.0000 0.2410 0.1390 0.0430
QS(B) -0.9691 0.9392 0.0000 0.2400 0.1390 0.0440
VAR(HACA) -0.8691 1.1746 0.4196 0.2100 0.1250 0.0480
0.8 VARHAC(B) -0.9562 0.9184 0.0040 0.2560 0.1540 0.0460
PW-NW(A) -0.9803 0.9622 0.0012 0.4250 0.3010 0.1430
PW-NW(B) -0.9826 0.9656 0.0000 0.3940 0.2800 0.0340
PW-QS(A) -0.9804 0.9614 0.0002 0.3680 0.2490 0.1180
PW-QS(B) -0.9808 0.9621 0.0001 0.3670 0.2570 0.1210
Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 8: Bias, Variance, MSE, and Size of ¢ test under ARMA(4,4):(n,T)=(50,64)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.9334 24.3389 0.0001 0.2920 0.1620 0.0580
QS(A) -4.9271 24.2763 0.0001 0.2690 0.1690 0.0450
QS(B) -4.9286 24.2908 0.0001 0.2750 0.1740 0.0490
VARHAC(A) -4.8925 24.5929 0.0781 0.2450 0.1440 0.0270
0.0 VARHAC(B) -4.9167 24.1781 0.0039 0.2430 0.1290 0.0410
PW-NW(A) -4.9602 24.6154 0.0120 0.4500 0.3400 0.1710
PW-NW(B) -4.9641 24.6424 0.0000 0.4460 0.3400 0.1910
PW-QS(A) -4.9639 24.6407 0.0000 0.4520 0.3450 0.1950
PW-QS(B) -4.9636 24.6375 0.0000 0.4440 0.3410 0.1870
NW -2.9602 8.7627 0.0000 0.2840 0.1780 0.0470
QS(A) -2.9565 8.7407 0.0000 0.2710 0.1580 0.0410
QS(B) -2.9571 8.7445 0.0000 0.2770 0.1620 0.0460
VARHAC(A) -2.9247 8.7036 0.1499 0.2390 0.1360 0.0310
0.4 VARHAC(B) -2.9510 8.7089 0.0007 0.2430 0.1470 0.0330
PW-NW(A) -2.9766 8.8616 0.0016 0.4500 0.3260 0.1860
PW-NW(B) -2.9783 8.8702 0.0001 0.4840 0.3630 0.1840
PW-QS(A) -2.9780 8.8688 0.0001 0.4730 0.3580 0.1850
PW-QS(B) -2.9781 8.8690 0.0000 0.4710 0.3560 0.1780
NW -0.9868 0.9737 0.0000 0.2940 0.1750 0.0440
QS(A) -0.9857 0.9716 0.0000 0.2580 0.1560 0.0480
QS(B) -0.9858 0.9718 0.0000 0.2630 0.1550 0.0510
VARHAC(A) -0.9656 1.0039 0.0715 0.2260 0.1310 0.0400
0.8 VARHAC(B) -0.9835 0.9675 0.0001 0.2450 0.1210 0.0290
PW-NW(A) -0.9928 0.9856 0.0000 0.4820 0.3340 0.1740
PW-NW(B) -0.9928 0.9857 0.0000 0.4560 0.3370 0.1730
PW-QS(A) -0.9926 0.9853 0.0000 0.4540 0.3310 0.1690
PW-QS(B) -0.9925 0.9851 0.0000 0.4490 0.3290 0.1650
Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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Table 9: Bias, Variance, MSE, and Size of ¢ test under ARMA(4,4):(n,T)=(100,128)

T Estimator Bias MSE Variance 10% 5% 1%
NW -4.9720 24.7206 0.0000 0.2460 0.1350 0.0430
QS(A) -4.9703 24.7035 0.0000 0.2490 0.1510 0.0340
QS(B) -4.9706 24.7073 0.0000 0.2520 0.1530 0.0350
VARHAC(A) -4.9643 24.6519 0.0075 0.2270 0.1290 0.0260
0.0 VARHAC(B) -4.9678 24.6786 0.0000 0.2070 0.1090 0.0270
PW-NW(A) -4.9837 24.8371 0.0000 0.4180 0.3040 0.1480
PW-NW(B) -4.9840 24.8460 0.0000 0.4540 0.3360 0.1930
PW-QS(A) -4.9836 24.8367 0.0000 0.4480 0.3290 0.1760
PW-QS(B) -4.9837 24.8371 0.0000 0.4520 0.3280 0.1770
NW -2.9832 8.8995 0.0000 0.2530 0.1520 0.0450
QS(A) -2.9822 8.8935 0.0000 0.2390 0.1220 0.0340
QS(B) -2.9824 8.8948 0.0000 0.2410 0.1220 0.0360
VARHAC(A) -2.9803 8.8822 0.0000 0.2080 0.1080 0.0240
0.4 VARHAC(B) -2.9803 8.8824 0.0000 0.2170 0.1180 0.0270
PW-NW(A) -2.9902 8.9413 0.0000 0.4330 0.3110 0.1630
PW-NW(B) -2.9904 8.9425 0.0000 0.4390 0.3150 0.1560
PW-QS(A) -2.9902 8.9412 0.0000 0.4290 0.3090 0.1500
PW-QS(B) -2.9902 8.9414 0.0000 0.4290 0.3100 0.1530
NW -0.9944 0.9889 0.0000 0.2800 0.1500 0.0320
QS(A) -0.9941 0.9883 0.0000 0.2380 0.1270 0.0200
QS(B) -0.9942 0.9884 0.0000 0.2400 0.1270 0.0200
VARHAC(A) -0.9934 0.9868 0.0000 0.2010 0.1010 0.0120
0.8 VARHAC(B) -0.9935 0.9871 0.0000 0.2250 0.1140 0.0220
PW-NW(A) -0.9968 0.9935 0.0000 0.4510 0.3450 0.1650
PW-NW(B) -0.9968 0.9936 0.0000 0.4450 0.3260 0.1460
PW-QS(A) -0.9967 0.9935 0.0000 4340 0.3200 0.1400
PW-QS(B) -0.9967 0.9935 0.0000 0.4330 0.3220 0.1410
Note:

The number of simulations is 1000.

The sums of coefficients of AR and MA are 0.9, respecitvely
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