EconPapers    
Economics at your fingertips  
 

Expert Opinions and Logarithmic Utility Maximization for Multivariate Stock Returns with Gaussian Drift

J\"orn Sass, Dorothee Westphal and Ralf Wunderlich

Papers from arXiv.org

Abstract: This paper investigates optimal trading strategies in a financial market with multidimensional stock returns where the drift is an unobservable multivariate Ornstein-Uhlenbeck process. Information about the drift is obtained by observing stock returns and expert opinions. The latter provide unbiased estimates on the current state of the drift at discrete points in time. The optimal trading strategy of investors maximizing expected logarithmic utility of terminal wealth depends on the filter which is the conditional expectation of the drift given the available information. We state filtering equations to describe its dynamics for different information settings. Between expert opinions this is the Kalman filter. The conditional covariance matrices of the filter follow ordinary differential equations of Riccati type. We rely on basic theory about matrix Riccati equations to investigate their properties. Firstly, we consider the asymptotic behaviour of the covariance matrices for an increasing number of expert opinions on a finite time horizon. Secondly, we state conditions for the convergence of the covariance matrices on an infinite time horizon with regularly arriving expert opinions. Finally, we derive the optimal trading strategy of an investor. The optimal expected logarithmic utility of terminal wealth, the value function, is a functional of the conditional covariance matrices. Hence, our analysis of the covariance matrices allows us to deduce properties of the value function.

New Economics Papers: this item is included in nep-upt
Date: 2016-01, Revised 2016-03
References: View references in EconPapers View complete reference list from CitEc
Citations Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1601.08155 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:arx:papers:1601.08155

Access Statistics for this paper

More papers in Papers from arXiv.org
Series data maintained by arXiv administrators ().

 
Page updated 2017-02-27
Handle: RePEc:arx:papers:1601.08155