EconPapers    
Economics at your fingertips  
 

A Bayesian Approach to Variable Selection in Logistic Regression with Application to Predicting Earnings Direction from Accounting Information

Richard Gerlach, Ron Bird () and Anthony David Hall ()

No 47, Research Paper Series from Quantitative Finance Research Centre, University of Technology, Sydney

Abstract: This paper presents a Bayesian technique for the estimation of a logistic regression model including variable selection. The model is used, as in Ou and Penman (1989), to predict the direction of company earnings, one year ahead of time, from a large set of accounting variables from financial statements. We present a Markov chain Monte Carlo sampling scheme, that includes the variable selection technique of Smith and Kohn (1996) and the non-Gaussian estimation method of Mira and Tierney (1997), to estimate the model. The technique is applied to companies in the United States, United Kingdom and Australia. This extends the analysis of Ou and Penman (1989) who studied United States companies only. The results obtained compare favourably to the technique used in Ou and Penamn (1989) for all three regions.

Date: 2000-10-01
References: View complete reference list from CitEc
Citations View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://www.business.uts.edu.au/qfrc/research/research_papers/rp47.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:uts:rpaper:47

Access Statistics for this paper

More papers in Research Paper Series from Quantitative Finance Research Centre, University of Technology, Sydney
Address: PO Box 123, Broadway, NSW 2007, Australia
Contact information at EDIRC.
Series data maintained by Duncan Ford ().

 
Page updated 2014-12-19
Handle: RePEc:uts:rpaper:47