Neural Jumps for Option Pricing
Duosi Zheng,
Hanzhong Guo,
Yanchu Liu and
Wei Huang
Papers from arXiv.org
Abstract:
Recognizing the importance of jump risk in option pricing, we propose a neural jump stochastic differential equation model in this paper, which integrates neural networks as parameter estimators in the conventional jump diffusion model. To overcome the problem that the backpropagation algorithm is not compatible with the jump process, we use the Gumbel-Softmax method to make the jump parameter gradient learnable. We examine the proposed model using both simulated data and S&P 500 index options. The findings demonstrate that the incorporation of neural jump components substantially improves the accuracy of pricing compared to existing benchmark models.
Date: 2025-06
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2506.05137 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2506.05137
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().