EconPapers    
Economics at your fingertips  
 

Centered MA Dirichlet ARMA for Financial Compositions: Theory & Empirical Evidence

Harrison Katz

Papers from arXiv.org

Abstract: Observation-driven Dirichlet models for compositional time series commonly use the additive log-ratio (ALR) link and include a moving-average (MA) term based on ALR residuals. In the standard Bayesian Dirichlet Auto-Regressive Moving-Average (B-DARMA) recursion, this MA regressor has a nonzero conditional mean under the Dirichlet likelihood, which biases the mean path and complicates interpretation of the MA coefficients. We propose a minimal change: replace the raw regressor with a centered innovation equal to the ALR residual minus its conditional expectation, computable in closed form using digamma functions. Centering restores mean-zero innovations for the MA block without altering either the likelihood or the ALR link. We provide closed-form identities for the conditional mean and forecast recursion, show first-order equivalence to a digamma-link DARMA while retaining a simple inverse back to the mean composition, and supply ready-to-use code. In a weekly application to the Federal Reserve H.8 bank-asset composition, the centered specification improves log predictive scores with virtually identical point accuracy and markedly cleaner Hamiltonian Monte Carlo diagnostics.

Date: 2025-10, Revised 2025-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: Add references at CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2510.18903 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.18903

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-11-10
Handle: RePEc:arx:papers:2510.18903