A Multi-Layer Machine Learning and Econometric Pipeline for Forecasting Market Risk: Evidence from Cryptoasset Liquidity Spillovers
Yimeng Qiu and
Feihuang Fang
Papers from arXiv.org
Abstract:
We study whether liquidity and volatility proxies of a core set of cryptoassets generate spillovers that forecast market-wide risk. Our empirical framework integrates three statistical layers: (A) interactions between core liquidity and returns, (B) principal-component relations linking liquidity and returns, and (C) volatility-factor projections that capture cross-sectional volatility crowding. The analysis is complemented by vector autoregression impulse responses and forecast error variance decompositions (see Granger 1969; Sims 1980), heterogeneous autoregressive models with exogenous regressors (HAR-X, Corsi 2009), and a leakage-safe machine learning protocol using temporal splits, early stopping, validation-only thresholding, and SHAP-based interpretation. Using daily data from 2021 to 2025 (1462 observations across 74 assets), we document statistically significant Granger-causal relationships across layers and moderate out-of-sample predictive accuracy. We report the most informative figures, including the pipeline overview, Layer A heatmap, Layer C robustness analysis, vector autoregression variance decompositions, and the test-set precision-recall curve. Full data and figure outputs are provided in the artifact repository.
Date: 2025-10
New Economics Papers: this item is included in nep-big, nep-cmp, nep-for and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2510.20066 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2510.20066
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().