EconPapers    
Economics at your fingertips  
 

Structural insights into cauliflower mitoribosome in translation state and in association with a late assembly factor

Vasileios Skaltsogiannis, Philippe Wolff, Tan-Trung Nguyen, Nicolas Corre, David Pflieger, Todd Blevins, Yaser Hashem, Philippe Giegé () and Florent Waltz ()
Additional contact information
Vasileios Skaltsogiannis: Université de Strasbourg, Institut de biologie de moléculaire des plantes CNRS
Philippe Wolff: Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS
Tan-Trung Nguyen: 2 rue R. Escarpit, Institut Européen de Chimie et Biologie, Université de Bordeaux
Nicolas Corre: Université de Strasbourg, Institut de biologie de moléculaire des plantes CNRS
David Pflieger: Université de Strasbourg, Institut de biologie de moléculaire des plantes CNRS
Todd Blevins: Université de Strasbourg, Institut de biologie de moléculaire des plantes CNRS
Yaser Hashem: 2 rue R. Escarpit, Institut Européen de Chimie et Biologie, Université de Bordeaux
Philippe Giegé: Université de Strasbourg, Institut de biologie de moléculaire des plantes CNRS
Florent Waltz: Spitalstrasse 41, Biozentrum, University of Basel

Nature Communications, 2025, vol. 16, issue 1, 1-13

Abstract: Abstract Ribosomes are key molecular machines that translate mRNA into proteins. Mitoribosomes are specific ribosomes found in mitochondria, which have been shown to be remarkably diverse across eukaryotic lineages. In plants, they possess unique features, including additional rRNA domains stabilized by plant-specific proteins. However, the structural specificities of plant mitoribosomes in translation state remained unknown. We used cryo-electron microscopy to provide a high-resolution structural characterization of the cauliflower mitoribosome, in translating and maturation states. The structure reveals the mitoribosome bound with a tRNA in the peptidyl site, along with a segment of mRNA and a nascent polypeptide. Moreover, using structural data, nanopore sequencing and mass spectrometry, we identify a set of 19 ribosomal RNA modifications. Additionally, we observe a late assembly intermediate of the small ribosomal subunit, in complex with the RsgA assembly factor. This reveals how a plant-specific extension of RsgA blocks the mRNA channel to prevent premature mRNA association before complete small subunit maturation. Our findings elucidate key aspects of translation in angiosperm plant mitochondria, revealing its distinct features compared to other eukaryotic lineages.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-025-65864-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65864-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-025-65864-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-04
Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65864-z