EconPapers    
Economics at your fingertips  
 

SUBSAMPLING INFERENCE FOR NONPARAMETRIC EXTREMAL CONDITIONAL QUANTILES

Daisuke Kurisu and Taisuke Otsu

Econometric Theory, 2025, vol. 41, issue 2, 326-340

Abstract: This paper proposes a subsampling inference method for extreme conditional quantiles based on a self-normalized version of a local estimator for conditional quantiles, such as the local linear quantile regression estimator. The proposed method circumvents difficulty of estimating nuisance parameters in the limiting distribution of the local estimator. A simulation study and empirical example illustrate usefulness of our subsampling inference to investigate extremal phenomena.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:41:y:2025:i:2:p:326-340_3

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-10-25
Handle: RePEc:cup:etheor:v:41:y:2025:i:2:p:326-340_3