Numerical Modeling and Multiscale Evaluation of Fe 3 O 4 –Graphene Oxide Nanofluids in Electromagnetic Heating for Colombian Heavy Oil Recovery
Paola A. León,
Andres F. Ortíz,
Jimena Gómez-Delgado,
Daniela Barrera,
Fabian Tapias,
Nicolas Santos and
Enrique Mejía-Ospino ()
Additional contact information
Paola A. León: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Andres F. Ortíz: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Jimena Gómez-Delgado: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Daniela Barrera: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Fabian Tapias: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Nicolas Santos: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Enrique Mejía-Ospino: Grupo de Investigación en Tomografía (GIT), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Energies, 2025, vol. 18, issue 22, 1-22
Abstract:
Electromagnetic heating (EMH) using microwaves has emerged as a promising enhanced oil recovery (EOR) technique, particularly for heavy crude oils where conventional thermal methods encounter technical and environmental challenges. However, its large-scale implementation remains limited due to incomplete understanding of its energy transfer mechanisms. This study proposes an experimental–numerical approach integrating magnetic graphene oxide nanoparticles (Fe 3 O 4 @GO) with microwave heating to enhance energy absorption near the wellbore. The nanomaterial was synthesized via a modified Hummer’s method followed by in situ magnetite precipitation and studied through multiple material characterization techniques showing uniform 80 nm particles with superparamagnetic behavior—ideal for EMH applications. Nine experiments were conducted on sand–heavy-oil–water systems with nanoparticle concentrations up to 500 ppm using a laboratory microwave heating prototype. A simulation model was then developed in CMG-STARS for history matching to estimate energy absorption as a function of saturation and nanoparticle concentration. Experiments reached temperatures up to 240 °C, with 653 MJ of effective heat transferred to the target zone over 55 h, as estimated from the input heat required in the simulator for history matching. The results confirm that magnetic graphene oxide nanoparticles enhance thermal efficiency and heat distribution in microwave-assisted EOR.
Keywords: magnetic graphene oxide; microwave heating; enhanced oil recovery; heavy crude oil; reservoir simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/22/5868/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/22/5868/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:22:p:5868-:d:1789645
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().