Economics at your fingertips  

A minimal extension of Bayesian decision theory

Ken Binmore ()
Additional contact information
Ken Binmore: Bristol University

Theory and Decision, 2016, vol. 80, issue 3, 341-362

Abstract: Abstract Savage denied that Bayesian decision theory applies in large worlds. This paper proposes a minimal extension of Bayesian decision theory to a large-world context that evaluates an event $$E$$ E by assigning it a number $$\pi (E)$$ π ( E ) that reduces to an orthodox probability for a class of measurable events. The Hurwicz criterion evaluates $$\pi (E)$$ π ( E ) as a weighted arithmetic mean of its upper and lower probabilities, which we derive from the measurable supersets and subsets of $$E$$ E . The ambiguity aversion reported in experiments on the Ellsberg paradox is then explained by assigning a larger weight to the lower probability of winning than to the upper probability. However, arguments are given here that would make anything but equal weights irrational when using the Hurwicz criterion. The paper continues by embedding the Hurwicz criterion in an extension of expected utility theory that we call expectant utility.

Keywords: Bayesian decision theory; Expected utility; Non-expected utility; Upper and lower probability; Hurwicz criterion; Alpha-maximin (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link) Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/11238/PS2

Access Statistics for this article

Theory and Decision is currently edited by Mohammed Abdellaoui

More articles in Theory and Decision from Springer
Series data maintained by Sonal Shukla ().

Page updated 2018-02-15
Handle: RePEc:kap:theord:v:80:y:2016:i:3:d:10.1007_s11238-015-9505-0