Structures of human organellar SPFH protein complexes
Jingjing Gao,
Dawafuti Sherpa,
Nikita Kupko,
Haruka Chino,
Jianwei Zeng and
Sichen Shao ()
Additional contact information
Jingjing Gao: Harvard Medical School
Dawafuti Sherpa: Harvard Medical School
Nikita Kupko: Harvard Medical School
Haruka Chino: Harvard Medical School
Jianwei Zeng: Harvard Medical School
Sichen Shao: Harvard Medical School
Nature Communications, 2025, vol. 16, issue 1, 1-15
Abstract:
Abstract Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) family proteins are found in all kingdoms of life and in multiple eukaryotic organelles. SPFH proteins assemble into homo- or hetero-oligomeric rings that form domed structures. Most SPFH assemblies also abut a cellular membrane, where they are implicated in diverse functions ranging from membrane organization to protein quality control. However, the precise architectures of different SPFH complexes remain unclear. Here, we report single-particle cryo-EM structures of the endoplasmic reticulum (ER)-resident Erlin1/2 complex and the mitochondrial prohibitin (PHB1/2) complex, revealing assemblies of 13 heterodimers of Erlin1 and Erlin2 and 11 heterodimers of PHB1 and PHB2, respectively. We also describe key interactions underlying the architecture of each complex and conformational heterogeneity of the PHB1/2 complex. Our findings elucidate the distinct stoichiometries and properties of human organellar SPFH complexes and highlight common principles of SPFH complex organization.
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-025-65078-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-65078-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-025-65078-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().