Economics at your fingertips  

Incomplete temporal overlap and cross-sectional independence in event studies

Imre Karafiath

Applied Financial Economics Letters, 2008, vol. 4, issue 2, 81-86

Abstract: In the event study literature, estimates of security abnormal returns are considered independent whenever securities have different event dates, i.e. in the absence of 'event clustering'. Nonetheless, there are three sources of cross-sectional correlations in estimated abnormal returns even when no two securities have a common event date. First, the estimation interval (for market model parameters) may overlap; second, the event date for one security may overlap the estimation interval for another; third, event windows longer than a one (or two) day announcement may overlap. In this article, analytical and simulations methods are used to assess the influence of these partial overlaps. Simulations reveal that for short event windows (≤11 days, with 300 days in the estimation interval) these partial overlaps do not create any measurable bias, even when 50 separate events are contained within 125 trading days. However, there is potential for bias in 'long horizon' event studies with nearly clustered event dates.

Date: 2008
References: Add references at CitEc
Citations Track citations by RSS feed

Downloads: (external link) ... 40C6AD35DC6213A474B5 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from

Access Statistics for this article

Applied Financial Economics Letters is currently edited by Mark Taylor

More articles in Applied Financial Economics Letters from Taylor and Francis Journals
Series data maintained by Chris Longhurst ().

Page updated 2017-10-21
Handle: RePEc:taf:apfelt:v:4:y:2008:i:2:p:81-86