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ABSTRACT

This paper derives several Lagrange Multiplier tests for the panel data regression model wih spatial
error correlation. These tests draw upon two strands of earlier work. The …rst is the LM tests for the
spatial error correlation model discussed in Anselin (1988, 1999) and Anselin, Bera, Florax and Yoon
(1996), and the second is the LM tests for the error component panel data model discussed in Breusch
and Pagan (1980) and Baltagi, Chang and Li (1992). The idea is to allow for both spatial error
correlation as well as random region e¤ects in the panel data regression model and to test for their
joint signi…cance. Additionally, this paper derives conditional LM tests, which test for random regional
e¤ects given the presence of spatial error correlation. Also, spatial error correlation given the presence
of random regional e¤ects. These conditional LM tests are an alternative to the one directional LM
tests that test for random regional e¤ects ignoring the presence of spatial error correlation or the one
directional LM tests for spatial error correlation ignoring the presence of random regional e¤ects. We
argue that these joint and conditional LM tests guard against possible misspeci…cation. Extensive
Monte Carlo experiments are conducted to study the performance of these LM tests as well as the
corresponding Likelihood Ratio tests.
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of Maryland, June, 2001. Baltagi would like to thank the Bush School Program in the Economics of Public

Policy for its …nancial support.



1 INTRODUCTION

Spatial dependence models deal with spatial interaction (spatial autocorrelation) and spatial

structure (spatial heterogeneity) primarily in cross-section data, see Anselin (1988, 1999).

Spatial dependence models use a metric of economic distance, see Anselin (1988) and Conley

(1999) to mention a few. This measure of economic distance provides cross-sectional data with

a structure similar to that provided by the time index in time series. There is an extensive

literature estimating these spatial models using maximum likelihood methods, see Anselin

(1988). More recently, generalized method of moments have been proposed by Kelejian and

Prucha (1999) and Conley (1999). Testing for spatial dependence is also extensively studied

by Anselin (1988, 1999), Anselin and Bera (1998), Anselin, Bera, Florax and Yoon (1996) to

mention a few.

With the increasing availability of micro as well as macro level panel data, spatial panel data

models studied in Anselin (1988) are becoming increasingly attractive in empirical economic

research. See Case (1991), Kelejian and Robinson (1992), Case, Hines and Rosen (1993),

Holtz-Eakin (1994), Driscoll and Kraay (1998), Baltagi and Li (1999) and Bell and Bockstael

(2000) for a few applications. Convergence in growth models that use a pooled set of countries

over time could have spatial correlation as well as heterogeneity across countries to contend

with, see Delong and Summers (1991) and Islam (1995) to mention a few studies. County

level data over time, whether it is expenditures on police, or measuring air pollution levels can

be treated with these models. Also, state level expenditures over time on welfare bene…ts,

mass transit, etc. Household level survey data from villages observed over time to study

nutrition, female labor participation rates, or the e¤ects of education on wages could exhibit

spatial correlation as well as heterogeneity across households and this can be modeled with

a spatial error component model.

Estimation and testing using panel data models have also been extensively studied, see Hsiao

(1986) and Baltagi (2001), but these models ignore the spatial correlation. Heterogeneity

across the cross-sectional units is usually modeled with an error component model. A La-

grange multiplier test for random e¤ects was derived by Breusch and Pagan (1980), and an

extensive Monte Carlo on testing in this error component model was performed by Baltagi,

Chang and Li (1992). This paper extends the Breusch and Pagan LM test to the spatial

error component model. First, a joint LM test is derived which simultaneously tests for the

existence of spatial error correlation as well as random region e¤ects. This LM test is based

on the estimation of the model under the null hypothesis and its computation is simple requir-

ing only least squares residuals. This test is important, because ignoring spatial correlation

and heterogeneity due to the random region e¤ects will result in ine¢cient estimates and
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misleading inference. Next, two conditional LM tests are derived. One for the existence of

spatial error correlation assuming the presence of random region e¤ects, and the other for the

existence of random region e¤ects assuming the presence of spatial error correlation. These

tests guard against misleading inference caused by (i) one directional LM tests that ignore

the presence of random region e¤ects when testing for spatial error correlation, or (ii) one

directional LM tests that ignore the presence of spatial correlation when testing for random

region e¤ects.

Section 2 revisits the spatial error component model considered in Anselin (1988) and provides

the joint and conditional LM tests proposed in this paper. Only the …nal LM test statistics

are given in the paper. Their derivations are relegated to the Appendices. Section 3 compares

the performance of these LM tests as well as the corresponding likelihood ratio LR tests using

Monte Carlo experiments. Section 4 gives a summary and conclusion.

2 THE MODEL AND TEST STATISTICS

Consider the following panel data regression model, see Baltagi (2001):

yti = X 0
ti¯ + uti; i = 1; ::; N ; t = 1; ¢ ¢ ¢ ; T; (2.1)

where yti is the observation on the ith region for the tth time period, Xti denotes the kx1

vector of observations on the non-stochastic regressors and uti is the regression disturbance.

In vector form, the disturbance vector of (2.1) is assumed to have random region e¤ects as

well as spatially autocorrelated residual disturbances, see Anselin (1988):

ut = ¹ + ²t; (2.2)

with

²t = ¸W²t + ºt; (2.3)

where u0t = (ut1; : : : ; utN), ²0t = (²t1; : : : ; ²tN ) and ¹0 = (¹1; ¢ ¢ ¢ ; ¹N) denote the vector of

random region e¤ects which are assumed to be IIN(0; ¾2
¹): ¸ is the scalar spatial autoregres-

sive coe¢cient with j ¸ j< 1: W is a known N £ N spatial weight matrix whose diagonal

elements are zero. W also satis…es the condition that (IN¡¸W ) is nonsingular for all j ¸ j< 1.

º0t = (ºt1; ¢ ¢ ¢ ; ºtN ); where ºti is i:i:d: over i and t and is assumed to be N(0; ¾2
º): The fºtig

process is also independent of the process f¹ig. One can rewrite (2.3) as

²t = (IN ¡ ¸W )¡1ºt = B¡1ºt; (2.4)
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where B = IN ¡ ¸W and IN is an identity matrix of dimension N . The model (2.1) can be

rewritten in matrix notation as

y = X¯ + u; (2.5)

where y is now of dimension NT £ 1, X is NT £ k, ¯ is k £ 1 and u is NT £ 1: The

observations are ordered with t being the slow running index and i the fast running index,

i.e., y0 = (y11; : : : ; y1N ; : : : ; yT1; : : : ; yTN): X is assumed to be of full column rank and its

elements are assumed to be asymptotically bounded in absolute value. Equation (2.2) can

be written in vector form as:

u = (¶T ­ IN )¹ + (IT ­ B¡1)º; (2.6)

where º0 = (º01; ¢ ¢ ¢ ; º0T ), ¶T is a vector of ones of dimension T , IT is an identity matrix of

dimension T and ­ denotes the Kronecker product. Under these assumptions, the variance-

covariance matrix for u can be written as

­u = ¾2
¹(JT ­ IN) + ¾2

º(IT ­ (B0B)¡1); (2.7)

where JT is a matrix of ones of dimension T . This variance-covariance matrix can be rewritten

as:

­u = ¾2
º

h
¹JT ­ (TÁIN + (B0B)¡1) + ET ­ (B0B)¡1

i
= ¾2

º§u; (2.8)

where Á = ¾2
¹=¾2

º , ¹JT = JT=T; ET = IT ¡ ¹JT and §u =
h

¹JT ­ (TÁIN + (B0B)¡1) + ET ­
(B0B)¡1

i
: Using results in Wansbeek and Kapteyn (1983), §¡1u is given by

§¡1u = ¹JT ­ (TÁIN + (B0B)¡1)¡1 + ET ­ B0B: (2.9)

Also, j§uj = jTÁIN + (B0B)¡1j ¢ j(B0B)¡1jT¡1: Under the assumption of normality, the log-

likelihood function for this model was derived by Anselin (1988, p.154) as

L = ¡NT
2

ln 2¼¾2
º ¡ 1

2
ln j§uj ¡

1
2¾2
º
u0§¡1u u

= ¡NT
2

ln 2¼¾2
º ¡ 1

2
ln[jTÁIN + (B0B)¡1j] +

(T ¡ 1)
2

ln jB0Bj

¡ 1
2¾2
º
u0§¡1u u; (2.10)

with u = y ¡ X¯. Anselin (1988, p.154) derived the LM test for ¸ = 0 in this model. Here,

we extend Anselin’s work by deriving the joint test for spatial error correlation as well as

random region e¤ects.

The hypotheses under consideration in this paper are the following:
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(a) Ha0 : ¸ = ¾2
¹ = 0, and the alternative Ha1 is that at least one component is not zero.

(b) Hb0 : ¾2
¹ = 0 (assuming no spatial correlation, i.e., ¸ = 0), and the one-sided alternative

Hb1 is that ¾2
¹ > 0 (assuming ¸ = 0).

(c) Hc0 : ¸ = 0 (assuming no random e¤ects, i.e., ¾2
¹ = 0), and the two-sided alternative is

Hc1 : ¸ 6= 0 (assuming ¾2
¹ = 0).

(d) Hd0 : ¸ = 0 (assuming the possible existence of random e¤ects, i.e., ¾2
¹ ¸ 0), and the

two-sided alternative is Hd1 : ¸ 6= 0 (assuming ¾2
¹ ¸ 0).

(e) He0 : ¾2
¹ = 0 (assuming the possible existence of spatial correlation, i.e., ¸ may be zero

or di¤erent from zero), and the one-sided alternative is He1 : ¾2
¹ > 0 (assuming that ¸

may be zero or di¤erent from zero).

In the next sections, we derive the corresponding LM tests for these hypotheses and we

compare their performance with the corresponding LR tests using Monte Carlo experiments.

2.1 Joint LM Test for Ha0: ¸ = ¾2¹ = 0

The joint LM test statistic for testing Ha0 : ¸ = ¾2
¹ = 0 vs Ha1 is given by

LMJ =
NT

2(T ¡ 1)
G2 +

N2T
b

H2; (2.11)

where G = ~u0(JT­IN )~u
~u0~u ¡ 1, H = ~u0(IT­W )~u

~u0~u , b = tr(W + W 0)2=2 = tr(W 2 + W 0W ) and ~u

denotes the OLS residuals. The derivation of this LM test statistic is given in Appendix A.1.

It is important to note that the large sample distribution of the LM test statistics derived

in this paper are not formally established, but are likely to hold under similar sets of low

level assumptions developed in Kelejian and Prucha (2001) for the Moran I test statistic

and its close cousins the LM tests for spatial correlation. See also Pinkse (1998, 1999) for

general conditions under which Moran ‡avoured tests for spatial correlation have a limiting

normal distribution in the presence of nuisance parameters in six frequently encountered

spatial models. Section 2.4 shows that the one-sided version of this joint LM test should be

used because variance components cannot be negative

2.2 Marginal LM Test for Hb0: ¾2¹ = 0 (assuming ¸ = 0)

Note that the …rst term in (2.11), call it LMG = NT
2(T¡1)G

2; is the basis for the LM test statistic

for testing Hb0 : ¾2
¹ = 0 assuming there are no spatial error dependence e¤ects, i.e., assuming
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that ¸ = 0, see Breusch and Pagan (1980). This LM statistic should be asymptotically

distributed as Â2
1 under Hb0 as N ! 1; for a given T . But this LM test has the problem

that the alternative hypothesis is assumed to be two-sided when we know that the variance

component cannot be negative. Honda (1985) suggested a uniformly most powerful test for

Hb0 based upon the square root of the G2 term, i.e.,

LM1 =

s
NT

2(T ¡ 1)
G: (2.12)

This should be asymptotically distributed as N(0,1) under Hb0 as N ! 1; for T …xed.

Moulton and Randolph(1989) showed that the asymptotic N(0,1) approximation for this

one sided LM test can be poor even in large samples. This occurs when the number of

regressors is large or the intra-class correlation of some of the regressors is high. They

suggest an alternative standardized LM (SLM) test statistic whose asymptotic critical values

are generally closer to the exact critical values than those of the LM test. This SLM test

statistic centers and scales the one sided LM statistic so that its mean is zero and its variance

is one:

SLM1 =
LM1 ¡ E(LM1)p

var(LM1)
=

d1 ¡ E(d1)p
var(d1)

; (2.13)

where d1 =
~u0D1~u
~u0~u

and D1 = (JT ­ IN) with ~u denoting the OLS residuals. Using the

normality assumption and results on moments of quadratic forms in regression residuals (see

e.g. Evans and King, 1985), we get

E(d1) = tr(D1M)=s; (2.14)

where s = NT ¡ k and M = INT ¡ X(X 0X)¡1X 0. Also.

var(d1) = 2fs tr(D1M)2 ¡ [tr(D1M)]2g=s2(s + 2): (2.15)

Under Hb0; SLM1 should be asymptotically distributed as N(0,1).

2.3 Marginal LM Test for Hc0: ¸ = 0 (assuming ¾2¹ = 0)

Similarly, the second term in (2.11), call it LMH = N2T
b H2; is the basis for the LM test

statistic for testing Hc0: ¸ = 0 assuming there are no random regional e¤ects, i.e., assuming

that ¾2
¹ = 0, see Anselin (1988). This LM statistic should be asymptotically distributed as

Â2
1 under Hc0. Alternatively, this can be obtained as

LM2 =

r
N2T

b
H: (2.16)
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This LM2 test statistic should be asymptotically distributed as N(0; 1) under Hc0. The

corresponding standardized LM (SLM) test statistic is given by

SLM2 =
LM2 ¡ E(LM2)p

var(LM2)
=

d2 ¡ E(d2)p
var(d2)

; (2.17)

where d2 =
~u0D2~u
~u0~u

and D2 = (IT ­ W ). Under Hc0; SLM2 should be asymptotically distrib-

uted as N(0; 1). SLM2 should have asymptotic critical values that are generally closer to the

corresponding exact critical values than those of the unstandardized LM2 test statistic.

2.4 One-Sided Joint LM Test for Ha0 : ¸ = ¾2¹ = 0

Following Honda (1985) for the two-way error component model, a handy one-sided test

statistic for Ha0 : ¸ = ¾2
¹ = 0 is given by

LMH = (LM1 + LM2)=
p

2; (2.18)

which is asymptotically distributed N(0; 1) under Ha0 .

Note that LM1 in (2.12) can be negative for a speci…c application, especially when the true

variance component ¾2
¹ is small and close to zero. Similarly, LM2 in (2.16) can be negative

especially when the true ¸ is small and close to zero. Following Gourieroux, Holly and

Monfort (1982), here after GHM, we propose the following test for the joint null hypothesis

Ha0 :

Â2
m =

8
>>>>>>><
>>>>>>>:

LM2
1 + LM2

2 if LM1 > 0; LM2 > 0

LM2
1 if LM1 > 0; LM2 · 0

LM2
2 if LM1 · 0; LM2 > 0

0 if LM1 · 0; LM2 · 0 ;

(2.19)

Under the null hypothesis Ha0 , Â2
m has a mixed Â2- distribution:

Â2
m » (

1
4
)Â2(0) + (

1
2
)Â2(1) + (

1
4
)Â2(2); (2.20)

where Â2(0) equals zero with probability one. The weights (14); (
1
2) and (14) follow from the

fact that LM1 and LM2 are asymptotically independent of each other and the results in

Gourieroux, Holly and Monfort (1982). The critical values for the mixed Â2
m are 7:289, 4:321

and 2:952 for ® = 0:01, 0:05 and 0:1, respectively.
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2.5 LR Test for Ha0 : ¸ = ¾2¹ = 0

We also compute the Likelihood ratio (LR) test for Ha0 : ¸ = ¾2
¹ = 0. Estimation of the

unrestricted log-likelihood function is obtained using the method of scoring. The details of

the estimation procedure are available upon request from the authors. Let b¾2
º , bÁ, b̧ and b̄

denote the unrestricted maximum likelihood estimators and let bB = IN¡b̧W and bu = y¡X 0b̄,

then the unrestricted maximum log-likelihood estimator function is given by

LU = ¡NT
2

ln 2¼¾̂2
º ¡ 1

2
ln[jTbÁIN + ( bB0 bB)¡1j] + (T ¡ 1) ln j bBj ¡ 1

2b¾2
º
û0b§¡1u û; (2.21)

see Anselin (1988), where b§ is obtained from (2.8) with bB replacing B and bÁ replacing Á: But

under the null hypothesis Ha0 , the variance-covariance matrix reduces to ­¤u = ­u = ¾2
ºITN

and the restricted maximum likelihood estimator of ¯ is ~̄
OLS , so that ~u = y ¡ X 0 ~̄

OLS

are the OLS residuals and ~¾2
º = ~u0~u=NT . Therefore, the restricted maximum log-likelihood

function under Ha0 is given by

LR = ¡NT
2

ln 2¼~¾2
º ¡ 1

2~¾2
º
~u0~u: (2.22)

Hence, the likelihood ratio test statistic for Ha0 : ¸ = ¾2
¹ = 0 is given by

LR¤
J = 2(LU ¡ LR); (2.23)

and this should be asymptotically distributed as a mixture of Â2 given in (2.20) under the

null hypothesis.

2.6 Conditional LM Test for Hd0 : ¸ = 0 (assuming ¾2¹ ¸ 0)

When one uses LM2; given by (2.16), to test Hc0 : ¸ = 0; one implicitly assumes that the

random region e¤ects do not exist. This may lead to incorrect decisions especially when ¾2
¹

is large. To overcome this problem, this section derives a conditional LM test for spatially

uncorrelated disturbances assuming the possible existence of random regional e¤ects. The

null hypothesis for this model is Hd0 : ¸ = 0 (assuming ¾2
¹ ¸ 0). Under the null hyphothesis,

the variance-covariance matrix reduces to ­0 = ¾2
¹JT ­ IN + ¾2

ºINT . It is the familiar form

of the one-way error component model, see Baltagi(1995), with ­¡10 = (¾2
1)¡1( ¹JT ­ IN) +

(¾2
º)¡1(ET ­ IN), where ¾2

1 = T¾2
¹ + ¾2

º ; and ET = IT ¡ ¹JT . Using derivations analogous

to those for the joint LM-test, see Appendix A.1, we obtain the following LM test for Hd0 vs

Hd1 ,
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LM¸ =
D̂(¸)2

[(T ¡ 1) + ¾̂4º
¾̂41

]b
, (2.24)

where

D̂(¸) =
1
2
û0[

¾̂2
º

¾̂4
1
( ¹JT ­ (W 0 + W )) +

1
¾̂2
º
(ET ­ (W 0 + W ))]û:

Here, ¾̂2
º = û0(ET ­ IN )û=N(T ¡ 1) and ¾̂2

1 = û0( ¹JT ­ IN)û=N are the maximum likelihood

estimates of ¾2
º and ¾2

1 under Hd0 , and û denotes the maximum likelihood residuals under the

null hypothesis Hd0 . See Appendix A.2 for more details.

Therefore, the one-sided test for zero spatial error dependence (assuming ¾2
¹ ¸ 0) against an

alternative, say of ¸ > 0 is obtained from

LM¤
¸ =

D̂(¸)r
[(T ¡ 1) + ¾̂4º

¾̂41
]b

; (2.25)

and this test statistic should be asymptotically distributed as N(0; 1) under Hd0 for N ! 1
and T …xed.

We can also get the LR test for Hd0 , using the scoring method. Details are available upon

request from the authors. Under the null hypothesis, the LR test statistic will have the same

asymptotic distribution as its LM counterpart.

2.7 Conditional LM Test for He0: ¾2¹ = 0 (assuming ¸ may or may not be
= 0)

Similarly, if one uses LM1; given by (2.12), to test Hb0 : ¾2
¹ = 0; one is implicitly assuming

that no spatial error correlation exists. This may lead to incorrect decisions especially when

¸ is signi…cantly di¤erent from zero. To overcome this problem, this section derives a condi-

tional LM test for no random regional e¤ects assuming the possible existence of spatial error

correlation. The null hypothesis for this model is He0 : ¾2
¹ = 0 (assuming ¸ may or may not

be = 0).

This LM test statistic is derived in Appendix A.3 and is given by

LM¹ = D̂0
¹ Ĵ¡1µ D̂¹; (2.26)

where

D̂¹ = ¡ T
2b¾2
º
tr( bB0 bB) +

1
2b¾4
º
bu0[JT ­ ( bB0 bB)2]bu; (2.27)
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and

bJµ =

2
664

TN
2b¾2º

NT
2b¾2º

tr[(W 0 bB + bB0W ) + ( bB0 bB)¡1] T
2b¾4º

tr[ bB0 bB]
T
2 tr

£¡
(W 0 bB + bB0W ) + ( bB0 bB)¡1

¢2¤ T
2b¾2º

tr[W 0 bB + bB0W ]
T 2
2b¾4º

tr[( bB0 bB)2]

3
775 ; (2.28)

=
T

2¾̂4
º

2
4

N ¾̂2
ºg h

¾̂2
ºg ¾̂4

º c ¾̂2
º d

h ¾̂2
º d Te

3
5 : (2.29)

where g = tr[(W 0 bB + bB0W )( bB0 bB)¡1], h = tr[ bB0 bB], c = tr
·³

(W 0 bB + bB0W )( bB0 bB)¡1
´2

¸
, d =

tr[W 0 bB + bB0W ] and e = tr[( bB0 bB)2]. Therefore,

LM¹ = (D̂¹)2
³2¾̂4

º
T

´³
TN¾̂4

ºec ¡ N¾̂4
ºd

2 ¡ T¾̂4
ºg

2e + 2¾̂4
ºghd ¡ ¾̂4

ºh
2c

´¡1

³
N¾̂4
ºc ¡ ¾̂4

ºg
2
´
: (2.30)

where bD¹ and bJµ are evaluated at the maximum likelihood estimates under the null hypoth-

esis He0 . However, LM¹ ignores the fact that the variance component cannot be negative.

Therefore, the one-sided version of this LM test is given by

LM¤
¹ =

D̂¹
q

(2¾̂4
º=T )(N¾̂4

ºc ¡ ¾̂4
ºg2)q

TN¾̂4
ºec ¡ N¾̂4

ºd2 ¡ T ¾̂4
ºg2e + 2¾̂4

ºghd ¡ ¾̂4
ºh2c

(2.31)

and this should be asymptotically distributed as N(0; 1) under He0 as N ! 1 for T …xed.

3 MONTE CARLO RESULTS

The experimental design for the Monte Carlo simulations is based on the format extensively

used in earlier studies in the spatial regression model by Anselin and Rey (1991) and Anselin

and Florax (1995) and in the panel data model by Nerlove (1971).

The model is set as follows :

yit = ® + x0it¯ + uit; i = 1; ¢ ¢ ¢ N; t = 1; ¢ ¢ ¢ ; T; (3.1)

where ® = 5 and ¯ = 0:5. xit is generated by a similar method to that of Nerlove (1971). In

fact, xit = 0:1t+0:5xi;t¡1+zit, where zit is uniformly distributed over the interval [¡0:5; 0:5].

The initial values xi0 are chosen as (5 + 10zi0). For the disturbances, uit = ¹i + "it, "it =

¸
PN
j=1 wij"it + ºit with ¹i » IIN(0; ¾2

¹) and ºit » IIN(0; ¾2
º): The matrix W is either a
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rook or a queen type weight matrix, and the rows of this matrix are standardized so that they

sum to one.1 We …x ¾2
¹+¾2

º = 20 and let ½ = ¾2
¹=(¾2

¹+¾2
º) vary over the set (0; 0:2; 0:5; 0:8).

The spatial autocorrelation factor ¸ is varied over a positive range from 0 to 0:9 by increments

of 0:1. Two values for N = 25 and 49, and two values for T = 3 and 7 are chosen. In total,

this amounts to 320 experiments.2 For each experiment, the joint, conditional and marginal

LM and LR tests are computed and 2000 replications are performed. In a …rst draft of this

paper we reported the two-sided LM and LR test results to show how misleading the results

of these tests can be. These results are available upon request from the authors. In this

version, we focus on the one-sided version of these tests except for testing Hb0: ¾2
¹ = 0 where

we thought a warning should be given to applied econometricans using packages that still

report two-sided versions of this test.

3.1 Joint Tests for Ha0 : ¸ = ¾2¹ = 0

Table 1 gives the frequency of rejections at the 5% level for the handy one-sided Honda-type

LM test statistic LMH given in (2.18), the GHM test statistic given in (2.19) and LR¤
J given

in (2.23). The results are reported for N = 25; 49 and T = 3; 7 for both the Queen and Rook

weight matrices based on 2000 replications. Table 1 shows that at the 5% level, the size of

the joint LR test (LR¤
J) is not signi…cantly di¤erent from 0:05 for all values of N and T and

choice of the weight matrix W . The same is true for LMH and GHM except for N = 25 and

T = 3 where they are undersized. The power of all three tests is reasonably high as long as

¸ > 0:3 or ½ > 0:2. In fact, for ½ ¸ 0:5 this power is almost one in all cases. For a …xed ¸ or

½, this power improves as N or T increase.
1The weight matrix with …rst-order contiguity according to the rook criterion has the cells immediately

above, below, to the right, and to the left, for a total of four neighboring cells. The weight matrix with …rst

order contiguity according to the queen criterion is eight cells immediately surrounding the central cell, see

Anselin and Rey (1991).
2The Monte Carlo experiments were also run for negative ¸ ranging between -0.1 and -0.9. The results

were similar and are not reproduced here to save space.
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Table 1
Joint Tests for Ha0 ; ¸ = ¾2

¹ = 0

Frequency of Rejections in 2000 Replications
Weight Matrix is ROOK

½ = 0:0 ½ = 0:2 ½ = 0:5
N, T ¸ LMH GHM LR¤J LMH GHM LR¤J LMH GHM LR¤J

25, 3 0.0 0.021 0.022 0.048 0.241 0.351 0.379 0.825 0.961 0.963
0.1 0.073 0.074 0.089 0.359 0.386 0.405 0.875 0.967 0.970
0.2 0.154 0.198 0.219 0.474 0.432 0.473 0.920 0.969 0.973
0.3 0.277 0.414 0.435 0.605 0.566 0.633 0.944 0.970 0.980
0.4 0.469 0.688 0.728 0.727 0.711 0.788 0.963 0.976 0.989
0.5 0.634 0.876 0.900 0.845 0.844 0.909 0.983 0.980 0.996
0.6 0.832 0.967 0.976 0.934 0.953 0.978 0.989 0.988 0.998
0.7 0.950 0.999 1.000 0.973 0.984 0.996 0.997 0.996 0.999
0.8 0.987 1.000 1.000 0.995 0.999 1.000 0.999 0.997 1.000
0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25, 7 0.0 0.038 0.039 0.061 0.805 0.895 0.890 1.000 1.000 1.000
0.1 0.115 0.144 0.151 0.916 0.940 0.916 1.000 1.000 1.000
0.2 0.299 0.450 0.463 0.962 0.949 0.947 1.000 1.000 1.000
0.3 0.611 0.827 0.836 0.986 0.984 0.986 1.000 1.000 1.000
0.4 0.866 0.983 0.984 0.997 0.997 0.997 1.000 1.000 1.000
0.5 0.975 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000
0.6 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

49, 3 0.0 0.035 0.041 0.062 0.440 0.608 0.613 0.979 0.999 0.999
0.1 0.120 0.133 0.135 0.613 0.638 0.633 0.996 1.000 1.000
0.2 0.289 0.384 0.403 0.786 0.750 0.767 0.999 1.000 1.000
0.3 0.513 0.724 0.738 0.902 0.860 0.895 1.000 1.000 1.000
0.4 0.782 0.948 0.956 0.965 0.946 0.969 1.000 1.000 1.000
0.5 0.920 0.992 0.992 0.989 0.994 0.997 1.000 1.000 1.000
0.6 0.993 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000
0.7 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

49, 7 0.0 0.033 0.040 0.050 0.977 0.996 0.994 1.000 1.000 1.000
0.1 0.188 0.259 0.263 0.994 0.997 0.996 1.000 1.000 1.000
0.2 0.563 0.779 0.775 0.999 0.999 1.000 1.000 1.000 1.000
0.3 0.895 0.984 0.986 1.000 1.000 1.000 1.000 1.000 1.000
0.4 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 1 (continued)
Joint Tests for Ha0 ; ¸ = ¾2

¹ = 0

Frequency of Rejections in 2000 Replications
Weight Matrix is QUEEN

½ = 0:0 ½ = 0:2 ½ = 0:5
N, T ¸ LMH GHM LR¤J LMH GHM LR¤J LMH GHM LR¤J

25, 3 0.0 0.020 0.029 0.064 0.216 0.344 0.372 0.822 0.955 0.958
0.1 0.059 0.067 0.066 0.301 0.369 0.380 0.864 0.962 0.967
0.2 0.112 0.151 0.140 0.375 0.402 0.411 0.902 0.967 0.968
0.3 0.229 0.299 0.282 0.510 0.505 0.519 0.932 0.977 0.981
0.4 0.379 0.536 0.514 0.638 0.608 0.650 0.954 0.973 0.984
0.5 0.576 0.748 0.743 0.786 0.764 0.806 0.970 0.983 0.992
0.6 0.771 0.895 0.891 0.903 0.899 0.923 0.985 0.990 0.995
0.7 0.916 0.975 0.974 0.970 0.973 0.980 0.997 0.993 1.000
0.8 0.972 0.997 0.997 0.992 0.992 0.996 0.999 0.999 0.999
0.9 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

25, 7 0.0 0.040 0.042 0.056 0.782 0.893 0.876 1.000 1.000 1.000
0.1 0.109 0.131 0.117 0.870 0.920 0.904 1.000 1.000 1.000
0.2 0.226 0.337 0.317 0.937 0.936 0.932 1.000 1.000 1.000
0.3 0.493 0.679 0.646 0.964 0.956 0.951 1.000 1.000 1.000
0.4 0.772 0.893 0.883 0.995 0.990 0.989 1.000 1.000 1.000
0.5 0.937 0.987 0.987 0.999 0.999 0.999 1.000 1.000 1.000
0.6 0.997 0.999 0.999 1.000 1.000 1.000 1.000 1.000 1.000

49, 3 0.0 0.029 0.032 0.057 0.406 0.6070 0.622 0.990 1.000 1.000
0.1 0.094 0.108 0.100 0.552 0.6380 0.636 0.992 1.000 1.000
0.2 0.212 0.259 0.232 0.719 0.7140 0.716 0.998 1.000 1.000
0.3 0.392 0.546 0.517 0.811 0.7860 0.804 0.999 1.000 1.000
0.4 0.641 0.797 0.782 0.915 0.8890 0.901 0.999 1.000 1.000
0.5 0.862 0.959 0.953 0.972 0.9650 0.973 1.000 1.000 1.000
0.6 0.968 0.991 0.993 0.993 0.9940 0.995 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000 0.9990 1.000 1.000 1.000 1.000

49, 7 0.0 0.052 0.056 0.056 0.961 0.994 0.995 1.000 1.000 1.000
0.1 0.156 0.167 0.153 0.989 0.993 0.995 1.000 1.000 1.000
0.2 0.419 0.566 0.536 0.998 0.998 0.996 1.000 1.000 1.000
0.3 0.775 0.908 0.899 1.000 1.000 0.999 1.000 1.000 1.000
0.4 0.961 0.995 0.994 1.000 1.000 1.000 1.000 1.000 1.000
0.5 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12



3.2 Marginal and Conditional Tests for ¸ = 0

Figure 1 plots the frequency of rejections in 2000 replications for testing ¸ = 0, i.e., zero

spatial error correlation. Figure 1 reports these frequencies for various values of N = 25; 49

and T = 3; 7, for both Rook and Queen weight matrices. Marginal tests for Hc0: ¸ = 0

(assuming ¾2
¹ = 0) as well as conditional tests for Hd0 : ¸ = 0 (assuming ¾2

¹ ¸ 0) are plotted

for various values of ¸. As clear from the graphs, marginal tests can have misleading size

when ½ is large (0:5 or 0:8). Marginal tests also have lower power than conditional tests for

½ > 0:2 and 0:2 · ¸ · 0:8. This is true whether we use LM or LR type tests. This di¤erence

in power is quite substantial for example when ½ = 0:8 and ¸ = 0:6. This phenomena persists

even when we increase N or T . However, it is important to note that marginal tests still

detect that something is wrong when ½ is large.

3.3 Marginal and Conditional Tests for ¾2¹ = 0

Table 2 gives the frequency of rejections in 2000 replications for the marginal LR and LM

tests for Hb0 : ¾2
¹ = 0 (assuming ¸ = 0). The results are reported only when ¾2

¹ = 0 for

N = 25; 49 and T = 3; 7 for both the Queen and Rook weight matrices. Table 2 shows

that at the 5% level, the size of the two-sided LM test (LMG) for Hb0 (compared to its one

sided counterpart LM1) could be missleading, especially when ¸ is large. For example, for

the Queen weight matrix when N = 49; T = 7 and ¸ = 0:9, the frequency of rejection for

LMG is 50:4% whereas the corresponding one-sided LM (LM1) has a size of 7:6%: The two-

sided likelihood ratio (LRG) test for Hb0 performs better than its two-sided LM counterpart

(LMG). However, in most experiments, LRG underestimates its size and is outperformed by

its one-sided LR alternative (LR1).

Table 2 also gives the frequency of rejections in 2000 replications for the conditional LR

and LM tests (LR¤
¹ and LM¤

¹) for He0 : ¾2
¹ = 0 (assuming ¸ 6= 0). These were derived in

Section 2.2. The results are reported only when ¾2
¹ = 0 for N = 25; 49 and T = 3; 7 for

both the Queen and Rook weight matrices. For most experiments, the conditional LM and

LR tests have size not signi…cantly di¤erent from 5%. For cases where ¸ is large, conditional

tests have better size than marginal tests. For example, when the weight matrix is Queen,

N = 49; T = 3 and ¸ = 0:9, the frequency of rejections at the 5% signi…cance level, when the

null is true, is 11:4% and 12% for LM1 and LR1 compared to 4:9% and 4:3% for LM¤
¹ and

LR¤
¹.
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Figure 1A

Tests for λ = 0

Frequency of Rejections in 2000 Replications

Marginal Tests and Conditional Tests

N=25, T=3
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Figure 1B

Tests for λ = 0

Frequency of Rejections in 2000 Replications

Marginal Tests and Conditional Tests

N=25, T=7
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Figure 1C

Tests for λ = 0

Frequency of Rejections in 2000 Replications

Marginal Tests and Conditional Tests

N=49, T=3
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Figure 1D

Tests for λ = 0

Frequency of Rejections in 2000 Replications

Marginal Tests and Conditional Tests

N=49, T=7

Weight is Rook ρ = 0.0
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Table 2
Tests for ¾2

¹ = 0

Frequency of Rejections in 2000 Replications
½ = 0:0

Hb0 ;¾2¹ = 0 (assuming ¸ = 0) He0 ;¾2¹ = 0
(assuming ¸ 6= 0)

two-sided one-sided one-sided
N, T W ¸ LMG LRG LM1 SLM1 LR1 LM¤

¹ LR¤¹

25, 3 Rook 0.0 0.037 0.014 0.038 0.038 0.045 0.036 0.027
0.1 0.052 0.020 0.044 0.047 0.050 0.043 0.041
0.2 0.044 0.015 0.039 0.045 0.045 0.040 0.039
0.3 0.055 0.023 0.044 0.049 0.047 0.040 0.036
0.4 0.058 0.023 0.046 0.049 0.054 0.031 0.039
0.5 0.069 0.017 0.043 0.046 0.048 0.041 0.038
0.6 0.100 0.031 0.060 0.067 0.067 0.043 0.038
0.7 0.143 0.043 0.067 0.070 0.075 0.043 0.035
0.8 0.215 0.050 0.074 0.080 0.083 0.040 0.034
0.9 0.341 0.055 0.068 0.074 0.072 0.036 0.035

25, 3 Queen 0.0 0.038 0.016 0.037 0.043 0.042 0.039 0.033
0.1 0.045 0.020 0.042 0.046 0.050 0.036 0.041
0.2 0.044 0.020 0.044 0.045 0.053 0.045 0.041
0.3 0.058 0.020 0.043 0.043 0.051 0.039 0.040
0.4 0.054 0.017 0.038 0.041 0.043 0.030 0.030
0.5 0.083 0.033 0.054 0.062 0.062 0.038 0.042
0.6 0.089 0.032 0.055 0.060 0.058 0.041 0.034
0.7 0.154 0.041 0.068 0.073 0.072 0.044 0.030
0.8 0.239 0.038 0.057 0.066 0.063 0.042 0.049
0.9 0.388 0.033 0.039 0.045 0.051 0.031 0.035

25, 7 Rook 0.0 0.053 0.020 0.052 0.058 0.059 0.043 0.042
0.1 0.045 0.018 0.045 0.047 0.053 0.039 0.030
0.2 0.033 0.011 0.035 0.039 0.033 0.051 0.032
0.3 0.051 0.018 0.049 0.050 0.051 0.045 0.044
0.4 0.063 0.022 0.046 0.046 0.047 0.051 0.036
0.5 0.062 0.018 0.044 0.044 0.046 0.052 0.039
0.6 0.100 0.023 0.051 0.050 0.055 0.066 0.046
0.7 0.168 0.035 0.056 0.059 0.058 0.050 0.036
0.8 0.257 0.032 0.050 0.050 0.050 0.061 0.049
0.9 0.510 0.017 0.024 0.024 0.023 0.050 0.035

25, 7 Queen 0.0 0.059 0.022 0.059 0.057 0.058 0.052 0.044
0.1 0.043 0.014 0.038 0.041 0.043 0.039 0.031
0.2 0.036 0.014 0.041 0.039 0.039 0.053 0.037
0.3 0.050 0.012 0.045 0.044 0.049 0.055 0.041
0.4 0.050 0.014 0.040 0.044 0.040 0.061 0.046
0.5 0.069 0.025 0.050 0.054 0.049 0.053 0.039
0.6 0.089 0.023 0.036 0.036 0.041 0.042 0.030
0.7 0.151 0.022 0.040 0.038 0.041 0.049 0.045
0.8 0.307 0.015 0.030 0.030 0.030 0.052 0.051
0.9 0.589 0.008 0.014 0.014 0.014 0.042 0.057
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Table 2 (continued)
Tests for ¾2

¹ = 0

Frequency of Rejections in 2000 Replications
½ = 0:0

Hb0 ;¾2¹ = 0 (assuming ¸ = 0) He0 ;¾2¹ = 0
(assuming ¸ 6= 0)

two-sided one-sided one-sided
N, T W ¸ LMG LRG LM1 SLM1 LR1 LM¤

¹ LR¤¹

49, 3 Rook 0.0 0.053 0.024 0.336 0.054 0.059 0.045 0.046
0.1 0.041 0.017 0.049 0.050 0.052 0.048 0.039
0.2 0.065 0.024 0.048 0.048 0.051 0.041 0.037
0.3 0.061 0.025 0.050 0.051 0.055 0.052 0.053
0.4 0.085 0.031 0.056 0.056 0.060 0.042 0.036
0.5 0.104 0.037 0.065 0.067 0.069 0.048 0.035
0.6 0.118 0.046 0.074 0.080 0.078 0.042 0.038
0.7 0.162 0.050 0.075 0.078 0.078 0.040 0.032
0.8 0.260 0.067 0.107 0.111 0.110 0.050 0.027
0.9 0.422 0.096 0.123 0.129 0.130 0.042 0.040

49, 3 Queen 0.0 0.048 0.021 0.046 0.048 0.049 0.044 0.043
0.1 0.045 0.018 0.046 0.047 0.050 0.045 0.040
0.2 0.062 0.031 0.059 0.066 0.063 0.054 0.059
0.3 0.055 0.023 0.039 0.045 0.044 0.046 0.039
0.4 0.086 0.036 0.062 0.065 0.064 0.051 0.047
0.5 0.085 0.026 0.051 0.053 0.053 0.037 0.038
0.6 0.126 0.038 0.068 0.072 0.076 0.047 0.044
0.7 0.168 0.051 0.087 0.093 0.088 0.046 0.043
0.8 0.282 0.074 0.102 0.105 0.103 0.045 0.051
0.9 0.463 0.098 0.114 0.121 0.120 0.049 0.043

49, 7 Rook 0.0 0.057 0.023 0.062 0.060 0.061 0.053 0.044
0.1 0.046 0.016 0.045 0.039 0.042 0.046 0.033
0.2 0.053 0.022 0.055 0.052 0.057 0.053 0.039
0.3 0.067 0.019 0.048 0.049 0.052 0.054 0.044
0.4 0.067 0.030 0.064 0.063 0.067 0.048 0.043
0.5 0.077 0.021 0.060 0.058 0.058 0.054 0.042
0.6 0.129 0.036 0.067 0.066 0.067 0.051 0.036
0.7 0.190 0.046 0.086 0.088 0.083 0.061 0.036
0.8 0.280 0.062 0.097 0.096 0.093 0.043 0.025
0.9 0.504 0.055 0.076 0.081 0.077 0.054 0.033

49, 7 Queen 0.0 0.043 0.017 0.043 0.046 0.048 0.047 0.034
0.1 0.057 0.017 0.054 0.057 0.061 0.058 0.045
0.2 0.042 0.017 0.048 0.051 0.050 0.060 0.043
0.3 0.053 0.022 0.054 0.056 0.057 0.048 0.038
0.4 0.061 0.024 0.048 0.048 0.046 0.046 0.035
0.5 0.084 0.023 0.065 0.061 0.066 0.056 0.043
0.6 0.117 0.037 0.071 0.068 0.069 0.060 0.048
0.7 0.195 0.043 0.071 0.073 0.070 0.059 0.046
0.8 0.313 0.046 0.075 0.073 0.069 0.056 0.056
0.9 0.574 0.034 0.050 0.050 0.049 0.041 0.045
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4 CONCLUSION

It is clear from the extensive Monte Carlo experiments performed that the spatial economet-

rics literature should not ignore the heterogeneity across cross-sectional units when testing

for the presence of spatial error correlation. Similarly, the panel data econometrics literature

should not ignore the spatial error correlation when testing for the presence of random re-

gional e¤ects. Both joint and conditional LM tests have been derived in this paper that are

easy to implement and that perform better in terms of size and power than the one-directional

LM tests. The latter tests ignore the random regional e¤ects when testing for spatial error

correlation or ignore spatial error correlation when testing for random regional e¤ects. This

paper does not consider testing for spatial lag dependence and random regional e¤ects in a

panel. This should be the subject of future research. Also, the results in the paper should

be tempered by the fact that the N = 25; 49 used in our Monte Carlo experiments may be

small for a typical micro panel. Larger N will probably improve the performance of these

tests whose critical values are based on their large sample distributions. However, it will

also increase the computation di¢culty and accuracy of the eigenvalues of the big weighting

matrix W . Finally, it is important to point out that the asymptotic distribution of our test

statistics were not explicitly derived in the paper but that they are likely to hold under a

similar set of low level assumptions developed by Kelejian and Prucha (2001).

5 REFERENCES

Anselin, L. (1988). Spatial Econometrics: Methods and Models (Kluwer Academic Publish-

ers, Dordrecht).

Anselin, L. (1999). Rao’s score tests in spatial econometrics. Journal of Statistical Planning

and Inference, (forthcoming).

Anselin, L. and A.K. Bera (1998). Spatial dependence in linear regression models with an

introduction to spatial econometrics. In A. Ullah and D.E.A. Giles, (eds.), Handbook

of Applied Economic Statistics, Marcel Dekker, New York.

Anselin, L. , A.K. Bera, R. Florax and M.J. Yoon (1996). Simple diagnostic tests for spatial

dependence. Regional Science and Urban Economics 26, 77-104.

Anselin, L and S. Rey (1991). Properties of tests for spatial dependence in linear regression

models. Geographical Analysis 23, 112-131.

16



Anselin, L. and R. Florax (1995). Small sample properties of tests for spatial dependence

in regression models: Some further results. In L. Anselin and R. Florax, (eds.), New

Directions in Spatial Econometrics, Springer-Verlag, Berlin, pp. 21-74.

Baltagi, B.H. (2001). Econometrics Analysis of Panel Data (Wiley, Chichester).

Baltagi, B.H., Y.J. Chang, and Q. Li (1992). Monte Carlo results on several new and

existing tests for the error component model. Journal of Econometrics 54, 95-120.

Baltagi, B.H. and D. Li (1999). Prediction in the panel data model with spatial correla-

tion. In L. Anselin and R.J.G.M. Florax (eds.), New Advances in Spatial Econometrics,

(forthcoming).

Bell, K.P. and N.R. Bockstael (2000). Applying the generalized-moments estimation ap-

proach to spatial problems involving microlevel data. Review of Economics and Statis-

tics 82, 72-82.

Breusch, T.S. and A.R. Pagan (1980). The Lagrange Multiplier test and its application to

model speci…cation in econometrics. Review of Economic Studies 47, 239-254.

Case, A.C. (1991). Spatial patterns in household demand. Econometrica 59, 953-965.

Case, A.C., J. Hines, Jr. and H. Rosen (1993). Budget spillovers and …scal policy indepen-

dence: Evidence from the states. Journal of Public Economics 52, 285-307.

Conley, T.G. (1999). GMM estimation with cross sectional dependence. Journal of Econo-

metrics 92, 1-45.

De Long, J.B. and L.H. Summers (1991). Equipment investment and economic growth.

Quarterly Journal of Economics 106, 445-502.

Driscoll, J. and A. Kraay (1998). Consistent covariance matrix estimation with spatially

dependent panel data. Review of Economics and Statistics 80, 549-560.

Evans, M.A. and M.L. King (1985). Critical value approximations for tests of linear regres-

sion disturbances. Review of Economic Studies 47, 329-254.

Gourieroux, C., A. Holly and A. Monfort (1982). Likelihood ratio test, Wald test, and Kuhn-

Tucker test in linear models with inequality constraints on the regression parameters.

Econometrica 50, 63-80.

Hartley, H.O. and J.N.K. Rao (1967). Maximum likelihood estimation for the mixed analysis

of variance model. Biometrika 54, 93-108.

17



Harville, D.A. (1977). Maximum likelihood approaches to variance component estimation

and to related problems. Journal of the American Statistical Association 72, 320-338.

Hemmerle, W.J. and H.O. Hartley (1973). Computing maximum likelihood estimates for

the mixed A.O.V. model using the W-transformation. Technometrics 15, 819-831.

Holtz-Eakin, D. (1994). Public-sector capital and the productivity puzzle. Review of Eco-

nomics and Statistics 76, 12-21.

Honda, Y. (1985). Testing the error components model with non-normal disturbances.

Review of Economic Studies 52, 681-690.

Islam, N. (1995). Growth empirics: A panel data approach. Quarterly Journal of Economics

110, 1127-1170.

Kelejian, H.H. and I.R. Prucha (1999). A generalized moments estimator for the autore-

gressive parameter in a spatial model. International Economic Review 40, 509-533.

Kelejian, H.H. and I.R. Prucha (2001). On the asymptotic distribution of the Moran I test

with applications. Journal of Econometrics 104, 219-257.

Kelejian H.H and D.P. Robinson (1992). Spatial autocorrelation: A new computationally

simple test with an application to per capita county police expenditures. Regional

Science and Urban Economics 22, 317-331.

Moulton, B.R. and W.C. Randolph (1989). Alternative tests of the error components model.

Econometrica 57, 685-693.

Nerlove, M. (1971). Further evidence on the estimation of dynamic economic relations from

a time-series of cross-sections. Econometrica 39, 359-382.

Pinkse, J. (1998). Asymptotic properties of Moran and related tests and a test for spatial

correlation in probit models, working paper, Department of Economics, University of

British Columbia.

Pinkse, J. (1999). Moran-‡avoured tests with nuisance parameters: Examples. In L. Anselin

and R.J.G.M. Florax (eds.), New Advances in Spatial Econometrics, (forthcoming).

Wansbeek, T.J. and A. Kapteyn (1983). A note on spectral decomposition and maximum

likelihood estimation of ANOVA models with balanced data. Statistics and Probability

Letters 1, 213-215.

18



Appendix A.1: Joint LM test
This appendix derives the joint LM test for spatial error correlation and random regional

e¤ects. The null hypothesis is given by Ha0 : ¾2
¹ = ¸ = 0. Let µ = (¾2

º ; ¾2
¹; ¸)0: Note that

the part of the information matrix corresponding to ¯ will be ignored in computing the LM

statistic, since the information matrix between the µ and ¯ parameters will be block diagonal

and the …rst derivatives with respect to ¯ evaluated at the restricted MLE will be zero. The

LM statistic is given by

LM = ~D0
µ
~J¡1µ ~Dµ; (A.1)

where ~Dµ = (@L=@µ)(~µ) is a 3 £ 1 vector of partial derivatives with respect to each element

of µ, evaluated at the restricted MLE ~µ: Also, ~J = E[¡@2L=@µ@µ0](~µ) is the information

matrix corresponding to µ, evaluated at the restricted MLE ~µ. Under the null hypothesis, the

variance-covariance matrix reduces to ¾2
ºITN and the restricted MLE of ¯ is ~̄

OLS , so that

~u = y ¡ X 0 ~̄
OLS are the OLS residuals and ~¾2

º = ~u0~u=NT .

Hartley and Rao(1967) or Hemmerle and Hartley(1973) give a useful general formula to obtain
~Dµ:

@L=@µr = ¡1
2
tr[­¡1u (@­u=@µr)] +

1
2
[u0­¡1u (@­u=@µr)­¡1u u]; (A.2)

for r = 1; 2; 3. It is easy to check that @­u=@¾2
º = IT ­ (B0B)¡1, @­u=@¾2

¹ = JT ­ IN
and @­u=@¸ = ¾2

º [IT ­ (B0B)¡1(W 0B + B0W )(B0B)¡1] using the fact that @(B0B)¡1=@¸ =

(B0B)¡1(W 0B + B0W )(B0B)¡1, see Anselin (1988, p.164).

Under Ha0 , we get

­¡1u jHa0 =
1
¾2
º
IT ­ IN ; (A.3)

@­u
@¾2
º
jHa0 = IT ­ IN ;

@­u
@¾2
¹
jHa0 = JT ­ IN ;

@­u
@¸

jHa0 = ¾2
ºIT ­ (W 0 + W ):

This uses the fact that B = IN under Ha0 . Using (A.2), we obtain
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@L
@¾2
º
jHa0 = ¡1

2
tr[

1
~¾2
º
(IT ­ (B0B)¡1)] +

1
2
[~u0

1
~¾4
º
(IT ­ (B0B)¡1)~u];

= ¡1
2
tr[

1
~¾2
º
INT ] +

1
2
[
~u0~u
~¾4
º

] = 0;

@L
@¾2
¹
jHa0 = D(~¾2

¹) =
NT
2~¾2
º

¡ ~u0(JT ­ IN )~u
~u0~u

¡ 1
¢
;

@L
@¸

jHa0 = D(~̧) =
NT
2

~u0(IT ­ (W + W 0))~u
~u0~u

= NT
~u0(IT ­ W )~u

~u0~u
:

Therefore, the score with respect to µ, evaluated at the restricted MLE is given by

~Dµ =

2
66664

0

D(~¾2
¹)

D(~̧)

3
77775

=

2
66664

0

NT
2~¾2º

( ~u
0(JT­IN )~u

~u0~u ¡ 1)

NT ~u0(IT­W )~u
~u0~u

3
77775

: (A.4)

For the information matrix, it is useful to use the formula given by Harville(1977):

Jrs = E
h

¡ @2L=@µr@µs
i

=
1
2
tr

h
­¡1u

³
@­u=@µr

´
­¡1u

³
@­u=@µs

´i
; (A.5)

for r; s = 1; 2; 3. The corresponding elements of the information matrix are given by

J11 = E
h

¡ @2L
@(¾2

º)2
i

=
1
2
tr

h¡ 1
¾2
º
(IT ­ IN)

¢2i =
NT
2¾4
º
;

J22 = E
h

¡ @2L
@(¾2

¹)2
i

=
1
2
tr

h 1
¾4
º
(JT ­ IN)2

i
=

NT 2

2¾4
º

;

J33 = E
h

¡ @2L
@¸2

i
=

1
2
tr

h
IT ­ (W + W 0)2

i

=
1
2
tr[IT ­ (2W 2 + 2W 0W )] = Tb;

J12 =
1
2
tr

h 1
¾2
º
(IT ­ IN)

1
¾2
º
(JT ­ IN)

i
=

NT
2¾4
º
;

J13 =
1
2
tr

h 1
¾2
º
(IT ­ IN)(IT ­ (W + W 0))

i

=
1

2¾2
º
tr[IT ­ (W + W 0)] = 0;
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J23 =
1
2
tr

h 1
¾2
º
(JT ­ IN)(IT ­ (W + W 0))

i

=
1

2¾2
º
tr[JT ­ (W + W 0)] = 0;

where the result that J13 = J23 = 0 follows from the fact that the diagonal elements of W

are 0 and J33 uses the fact that tr(W 2) = tr(W 02) and b = tr(W 2 + W 0W ).

Therefore, the information matrix evaluated under Ha0 is given by

~Jµ =
NT
2~¾4
º

2
66664

1 1 0

1 T 0

0 0 2b~¾4º
N

3
77775

; (A.6)

using (A.1), we get

LMJ =
·
0;

NT
2~¾2
º
G;NTH

¸
(
2~¾4
º

NT
)

2
64

T
T¡1 ¡ 1

T¡1 0
¡ 1
T¡1

1
T¡1 0

0 0 N
2b~¾4º

3
75

2
4

0
NT
2~¾2º

G
NTH

3
5

=
NT

2(T ¡ 1)
G2 +

N2T
b

H2: (A.7)

where G = ~u0(JT­IN )~u
~u0~u ¡ 1 and H = ~u0(IT­W )~u

~u0~u as descibed in (2.11).

Appendix A.2: Conditional LM test for ¸ = 0 (given ¾2¹ > 0)
In this appendix we derive the conditional LM test which tests for no spatial error correlation

given the existence of random regional e¤ects. The null hypothesis is given by Hd0 : ¸ = 0

(assuming ¾2
¹ > 0). Under the null hyphothesis, the variance-covariance matrix reduces to

­0 = ¾2
¹JT ­ IN + ¾2

ºINT . It is the familiar form of the one-way error component model, see

Baltagi(1995), with ­¡10 = (¾2
1)¡1( ¹JT ­ IN ) + (¾2

º)¡1(ET ­ IN), where ¾2
1 = T¾2

¹ + ¾2
º .

Under the null hypothesis Hd0 : ¸ = 0 (assuming ¾2
¹ > 0), we get

­¡1u jHd0 =
¡ 1
¾2
1

¹JT +
1
¾2
º
ET

¢
­ IN ; (A.8)

@­u
@¾2
º
jHd0 = IT ­ IN ; (A.9)

@­u
@¾2
¹
jHd0 = JT ­ IN ; (A.10)

@­u
@¸

jHd0 = ¾2
ºIT ­ (W + W 0): (A.11)
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Using (A.2), one obtains

@L
@¾2
º
jHd0 = ¡1

2
tr[­¡1u (IT ­ (B0B)¡1)] +

1
2
[û0­¡1u (IT ­ (B0B)¡1)­¡1u û]

= ¡1
2
tr[

¡ 1
¾̂2
1

¹JT +
1
¾̂2
º
ET

¢
­ IN ] +

1
2
[û0[

¡ 1
¾̂4
1

¹JT +
1
¾̂4
º
ET

¢
­ IN ]û] (A.12)

= ¡N(T ¡ 1)
2¾̂2
º

¡ N
2¾̂2

1
+

1
2
û0(

1
¾̂4
1

¹JT ­ IN)û +
1
2
û0(

1
¾̂4
º
ET ­ IN)û = 0;

@L
@¾2
¹
jHd0 = ¡1

2
tr[­¡1u (JT ­ IN)] +

1
2
[û0­¡1u (JT ­ IN)­¡1u û] (A.13)

= ¡NT
2¾̂2

1
+

1
2¾̂4

1
[û0( ¹JT ­ IN)û] = 0;

@L
@¸

jHd0 = ¡1
2
tr[­¡1u (¾2

ºIT ­ (W + W 0))] +
1
2
[û0­¡1u (¾2

ºIT ­ (W + W 0))­¡1u û]

=
1

2¾̂2
º
[û0(ET ­ (W + W 0))û] +

¾̂2
º

2¾̂4
1
[û0( ¹JT ­ (W + W 0))û] = D̂¸; (A.14)

where ¾̂2
º = û0(ET ­ IN)û=N(T ¡ 1) and ¾̂2

1 = û0( ¹JT ­ IN)û=N are the maximum likelihood

estimates of ¾2
º and ¾2

1, and û is the maximum likelihood residual under the null hypothesis

Hd0 .

Therefore, the score vector under Hd0 is given by

D̂ =

2
4

0
0

D̂¸

3
5 : (A.15)

Using (A.5), the elements of the information matrix are given by

J11 = E
h

¡ @2L
@(¾2

º)2
i

=
1
2
tr

h³
((¾¡21

¹JT + ¾¡2º ET ) ­ IN)
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(A.16)

=
N
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¡ 1
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1

+
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º

¢
;

J22 = E
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¹)2
i

=
1
2
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h³
((¾¡21

¹JT + ¾¡2º ET ) ­ IN )(JT ­ IN)
´2i

(A.17)

=
NT 2

2¾4
1

;
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i
=
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2
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¹JT + ¾¡2º ET ) ­ IN) ¢ (¾2
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´2i
(A.18)

=
¾4
º
2
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h
(¾¡41

¹JT + ¾¡4º ET ) ­ (2W 2 + 2W 0W )
i

=
³¾4
º

¾4
1

+ (T ¡ 1)
´
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=
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1
;

J13 = E
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2
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(A.20)
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i
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¾2
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i
= 0;

(A.21)

where the result that J13 = J23 = 0 follows from the fact that the diagonal elements of W is

0 and J33 uses the fact that tr(W 2) = tr(W 02), and b = tr(W 2 + W 0W ).

Therefore, the information matrix evaluated under Hd0 is given by

Ĵµ =

2
6666664

N
2 ( 1
¾̂41

+ T¡1
¾̂4º

) NT
2¾̂41

0

NT
2¾̂41

NT 2
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0

0 0 (T ¡ 1 + ¾̂4º
¾̂41

)b

3
7777775

: (A.22)

Therefore,

LM¸ = D̂0
¸ Ĵ¡1µ D̂¸

=
D̂(¸)2

[(T ¡ 1) + ¾̂4º
¾̂41

]b
;

as described in (2.24).

Appendix A.3: Conditional LM test for ¾2¹ = 0 (assuming ¸ 6= 0)
This appendix derives the conditional LM tests for zero random regional e¤ects assuming that

spatial error correlation exists. We give the detailed derivation of the score and information

matrix for testing He0 : ¾2
¹ = 0 (assuming ¸ 6= 0).

Under He0 ,

­0 = ¾2
ºIT ­ (B0B)¡1; (A.23)

­¡10 =
1
¾2
º
IT ­ (B0B); (A.24)
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and

@­u
@¾2
¹

¯̄
¯
He0

= JT ­ IN ; (A.25)

@­u
@¾2
º

¯̄
¯
He0

= IT ­ ( bB0 bB)¡1; (A.26)

@­u
@¸

¯̄
¯
He0

= b¾2
ºIT ­ ( bB0 bB)¡1(W 0 bB + bB0W )( bB0 bB)¡1; (A.27)

where bB = IN ¡ b̧W and b̧ is the MLE of ¸ under He0 . Using (A.2), we get
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This uses the fact that

­¡1u
@­u
@¾2
¹

¯̄
¯
He0

=
¡ 1
¾̂2
º
IT ­ bB0 bB

¢¡
JT ­ IN

¢
=

1
b¾2
º
JT ­ bB0 bB;

­¡1u
@­u
@¾2
¹
­¡1u

¯̄
¯
He0

=
¡ 1
b¾2
º
JT ­ bB0 bB

¢¡ 1
b¾2
º
IT ­ bB0 bB

¢
=

1
b¾4
º
JT ­ ( bB0 bB)2;

tr[­¡1u
@­u
@¾2
¹
]
¯̄
¯
He0

=
1
b¾2
º
tr[JT ­ bB0 bB] =

T
b¾2
º
tr[ bB0 bB]:

Similarly

@L
@¾2
º

¯̄
¯
He0

= ¡TN
2b¾2
º

+
1

2b¾4
º
bu0[IT ­ ( bB0 bB)]bu = 0; (A.29)

which yields
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Also,
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Therefore, the score vector under He0 is given by
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3
5 : (A.30)

The elements of the information matrix for this model using (A.5) are given by
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