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1 Introduction
In the panel time-series literature, where both the number of groups, N,
and the number of time periods T are both large, it is usual to assume
the absence of cross section dependence or uncorrelated disturbances across
groups. This seems restrictive for many applications in macroeconomics and
finance and neglecting it may be far from innocuous for empirical issues such
as purchasing power parity (PPP) or whether real exchange rates display
reversion towards a long run value (Bai and Ng 2001a; O’Connell 1998; Moon
and Perron 2001; Pedroni 1997).1 In addition, many theoretical panel results
have been derived under the assumption of cross section independence (
Baltagi and Kao 2000; Phillips and Moon 2000). As Phillips and Moon
(1999: p1092) put it “... quite commonly in panel data theory, cross section
independence is assumed in part because of the difficulties of characterizing
and modelling cross section dependence.”
In the presence of cross section dependence, traditional OLS-based esti-

mators are inefficient and the estimated standard errors are biased producing
misleading inference. The traditional remedy, SURE-GLS, is not however
feasible when the cross section dimension N is of the same order of mag-
nitude as the time series dimension T because the disturbance covariance
matrix is rank deficient. Robertson and Symons (1999) propose an innova-
tive method in this context which imposes a factor structure on the residuals
to provide a full-rank estimator of the covariance matrix. However, when
the non-zero covariances between the errors of different cross section units
are due to common omitted variables, it is not obvious that SURE-GLS is
always the correct response. If these common omitted variables – say oil
prices or global political events in the case where the units are countries –
are correlated with the country-specific regressors, both traditional pooled
estimators and GLS estimators will be biased and inconsistent. If there is just
one common omitted variable to which all cross-section units react homoge-
neously and if the slope parameters in the model are identical across units,
then a two-way fixed effects (FE) estimator may be appropriate. However
these conditions are very restrictive.
This paper, in common with a number of recent contributions in panel

1While Banerjee, Marcellino and Osbat (2001) do not examine PPP directly, their
discussion of the issue of cross unit cointegrating relations is also germane to this debate.
Pedroni (1997) also stresses long run cross section dependence.
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methods, employs a factor analysis framework.2 Suppose the parameters of
interest are a set of slope coefficients in a baseline regression (RI), the es-
timates of which will be biased and inconsistent if there are omitted global
variables correlated with each country regressor. We propose extracting the
largest factors of the RI residuals as proxies for the global unobservable vari-
ables. These factors are then included in an augmented regression (RII) to
seek to reduce the bias in the RI coefficient estimators. Established panel
estimators such as the pooled OLS (POLS), fixed effects (FE) or the Pesaran
and Smith (1995) mean group (MG) procedures can be used in each stage.
We show analytically for a simple DGP that the POLS estimator of the RII
slope coefficient has substantially smaller bias than that from the baseline
regression. In addition, it is shown to be consistent using sequential limit
asymptotics, as T converges to infinity with a fixed N and then N converges
to infinity.
This suggests that the proposed method is especially suited to many large

dimension datasets typically used for macroeconomic and financial analysis.
This is confirmed by Monte Carlo simulations for the finite sample perfor-
mance of the method and the choice of the number of factors included. The
bias reduction is confirmed using panel dimensions typical of annual and
monthly PPP datasets. Simulations show that information criteria based
on Bai and Ng (2002) are quite accurate in our context where the factors
are extracted from estimated disturbances rather than observed variables.
Finally when the method is applied to a PPP data set there is evidence of
cross section dependence and handling it with the proposed method seems
to reinforce the support for PPP. Throughout this paper we assume that the
omitted variables are I(0) and that the regressors and dependent variable are
either I(0) or cointegrate. The interesting case of an I(1) omitted variable is
a topic for further research.
The proposed estimation method is outlined in §2 and theoretical results

for a simple case are given in §3. The Monte Carlo simulations are pre-
sented in §4 and an empirical PPP application follows in §5. A final section
concludes.

2Factor structures for panels are used by Hall, Lazarova and Urga (1999) to test for the
number of common stochastic trends and by Bai and Ng (2001a,b) and Moon and Perron
(2001) to test for unit roots and cointegration.
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2 Cross section dependence
Consider the following baseline regression (RI) model

yit = x
0
itθi + uit, i = 1, 2, ..., N, t = 1, 2, ..., T, (1)

where xit is a K−vector of explanatory variables which would typically in-
clude an intercept and lags of yit. Suppose the data are generated by

yit = x
0
itβi + z

0
tγi + εit (2)

where the idiosyncratic error εit is zero-mean white noise distributed inde-
pendently over units and zt is a J−vector of unobserved common shocks or
random variables which may be correlated with each country regressor. The
auxiliary regression z0t = x

0
itDi+η0it whereDi is a K×J matrix, decomposes

z0t into two terms, one which is correlated with the ith country regressors
and another which is orthogonal to them. Substituting for z0t in (2) gives
yit = x

0
it(βi +Diγi) + η

0
itγi + εit which implies that the omitted z

0
t creates

two problems in (1). First ûit measures uit = η0itγi+εit = z
0
tγi−x0itDiγi+εit

which contains η0it, the part of z
0
t orthogonal to x

0
it. This term may be se-

rially correlated and will certainly be correlated across units. Both of these
will induce a nondiagonal residual covariance matrix or non-spherical dis-
turbances. This will make the OLS estimator θ̂i inefficient and its standard
error biased, even if Di is the null matrix. Second, uit is correlated with the
included explanatory variables unless Di = 0 and this makes θ̂i, and also the
GLS estimator, biased for βi (since E(θ̂i) = βi +Diγi) and inconsistent.

2.1 Principal components approach

Equation (1) for group i can be written for the N groups as

y0t = x
0
tΘ+ u

0
t (3)

where yt = [y1t, y2t, ..., yNt]0 and xt = [x1t,x2t, ...,xNt]0 are an N−vector and
an NK−vector, respectively, and Θ is the block-diagonal NK ×N matrix

Θ =


θ1 0 · · · 0

0 θ2
...

...
. . . 0

0 · · · 0 θN

 ,
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Similarly, (2) can be written for the N groups as y0t = x
0
tβ + z

0
tΓ + ε

0
t where

Γ is a J ×N matrix. Stacking the K×J matrices Di for the N groups gives
the NK × J matrix D = [D0

1D
0
2 · · ·D0

N ]
0 and z0t = x

0
tD+ η

0
it. We have

y0t = x
0
t[β +DΓ] + (z

0
t − x0tD)Γ + ε0t

and it follows that if we estimate (3) by OLS, then E(Θ̂) = Θ = β + DΓ.
The residuals measure u0t = (z

0
t − x0tD)Γ + ε0t which can be written as u =

ZΓ−XDΓ+ε for the T time periods, whereZ is T×J,X is T×NK and ε and
u are T×N matrices. Post-multiplying the latter by ũ =diag (u0iui)−1/2 gives
the T ×N matrix of standardized errors u

¯
= ZΓ̃−XDΓ̃ + ε̃ where Γ̃ = Γũ

and ε̃ = εũ. Since Z is unobserved, one needs to impose J2 normalising
restrictions on Γ̃ to provide estimates of Z. For this purpose assume Γ̃Γ̃0 = I.
With this normalisation one can write u

¯
Γ̃0 = Z −XD+ ε̃Γ̃0 or, equivalently

Z = u
¯
Γ̃0 +XD − ε̃Γ̃0 (4)

This suggests measuring Z by W = u
¯
A, the N principal components of

u
¯
obtained via the spectral decomposition of R = u

¯
0u
¯
= AΛA0, where A

is the orthogonal matrix of eigenvectors and Λ is the diagonal eigenvalue
matrix. If a few random factors, WJ , account for most of the disturbances
covariation then the cross-section dependence can be characterized by means
of a factor model u

¯
= WJA

0
J + E. The N × J matrix AJ (non-random

factor loadings) contains the J < N eigenvectors associated with the largest
eigenvalues and E is a T × N idiosyncratic error matrix. This suggests an
augmented regression (RII) for handling the cross-section dependence that
biases the estimators of the regression of interest (RI). This is

yit = x
0
itbi +w

0
tci + vit (5)

where wt is a J−vector of principal components from the RI errors.
One issue is how to determine J and, relatedly, how well the factors WJ

proxy the unobserved variables Z. Another issue regards interpreting the
factors because the identifying assumptions Γ̃Γ̃0 = I need not be meaningful
from an economic viewpoint. However, for a reasonable small J it may be
possible to give them an economic or financial interpretation.
Our approach has some commonalities with SURE-GLS. First, it re-

sembles the latter in that (5) includes linear combinations of OLS residu-
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als.3 However, our procedure is distinctive to the extent that it includes
the own residual. This results in endogeneity bias which falls with N as
shown in §3.2. For small N a slight modification of (5) can circumvent the
endogeneity problem. For each group i, the T × (N − 1) residual matrix
uı̄ = [u1, ..., ui−1, ui+1, ..., uN ] which excludes group i residuals is used to ex-
tract the first J factors, wı̄t, and yit = x0itbi+w

0
ı̄tci+vit is estimated.

4 Second,
since our proxies for the common shocks are calculated as linear combina-
tions of OLS residuals – by construction ûit is orthogonal to xit although
not necessarily to xjt for j 6= i – this suggests that the smaller the cross-
section correlations among regressors the closer the factors WJ will be to Z
and, hence, the more gains are expected from our approach in terms of bias
reduction. Conversely, if x1t = x2t = ... = xNt then the inclusion of WJ will
not improve the properties of the estimator b̂i in RII (over θ̂i in RI) which
will be still biased and inconsistent. This is similar to the situation where
for identical regressors there are no efficiency gains from SURE-GLS over
equation-by-equation OLS.

3 Analytical results

Consider a simple data generating process (DGP) comprising a country spe-
cific regression, say a PPP equation, in which a global variable zt, such as
oil prices, is omitted but where it also influences the country specific regres-
sors xit. For instance, oil prices could influence inflation differentials because
country-specific inflation differs in its response to oil prices depending on
whether the country imports or exports oil. Suppose data are generated by

xit = dit + zt (6)

yit = βxit + γzt + εit, εit ∼ iid(0, σ2ε)
where the innovations εit are uncorrelated across countries. We assume that
each regressor has an idiosyncratic (or country-specific) and common influ-
ence, dit ∼ iid(0,σ2d) and zt ∼ iid(0, σ2z), respectively, which are orthogonal
to each other and also to εit.

3Telser (1964) suggested an iterative approach to account for the cross-equation resid-
ual correlation which converges to an estimator with the same asymptotic properties as
Zellner’s SURE-GLS estimator. This consists of including as additional variables in each
equation the OLS residuals of all other equations.

4An alternative approach to abate the small N endogeneity bias would be to use the
IV method, that is, to instrument the factors wt in (5).
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Suppose data are available on xit and xit and we focus on the regressions

yit = θxit + uit (RI)
yit = bxit + cwt + vit (RII)

(7)

which differ in that the latter is augmented by wt =
PN

i=1 uit/N to proxy the
unobserved random factor zt. It can be shown that, for our baseline DGP, this
proxy is equal to the first principal component of u up to a scaling factor. To
study the properties of these regressions, we define the sequential probability
limits (plim) for T →∞ and any fixed N

SNyy = plim
T→∞

T−1
P

t y
2
it; SNyx = plim

T→∞
T−1

P
t yitxit (8)

and likewise for the other variables in (6) whose (co)variances are:

E(x2it) = σ
2
x = σ

2
d + σ

2
z E(d2it) = σ

2
d

E(y2it) = β
2σ2d + (β + γ)

2σ2z + σ
2
ε E(ε2it) = σ

2
ε

E(xityit) = βσ
2
d + (β + γ)σ

2
z E(xitxjt) = σ

2
z

E(yitzt) = (β + γ)σ
2
z E(xitdit) = σ

2
d

E(yityjt) = (β + γ)2σ2z E(xitzt) = σ2z
E(ztdit) = E(ztεit) = E(ditεit) = 0 E(zt

2) = σ2z

The auxiliary regression zt = δxit+ηit implies that yit = (β+γδ)xit+γηit+εit.
Hence, the OLS estimator θ̂ measures (β+ γδ) and the residuals ûit estimate
uit = γηit + εit, with variance σ

2
u ≡ E(u2it) = γ2(1− δ)2σ2z + γ2δ2σ2d + σ2ε and

covariance σij ≡ E(uitujt) = γ2(1− δ)2σ2z. Then we have wt =
PN

i=1(γηit +
εit)/N = γ(1− δ)zt − γδd̄t + ε̄t where d̄t = N−1P

i dit and it follows that

E(w2t ) = γ2(1− δ)2σ2z + γ2δ2N−1σ2d +N
−1σ2ε

E(yitwt) = (β + γ)(1− δ)γσ2z − βγδN−1σ2d +N
−1σ2ε

E(xitwt) = γ(1− δ)σ2z − γδN−1σ2d; E(ztwt) = γ(1− δ)σ2z
For our baseline DGP we have

SNyy = β
2σ2d + (β + γ)

2σ2z + σ
2
ε SNxx = σ

2
d + σ

2
z

SNww = γ
2(1− δ)2σ2z + γ2δ2N−1σ2d +N

−1σ2ε SNxz = σ
2
z

SNxw = γ[(1− δ)σ2z −N−1δσ2d] SNyx = βσ
2
d + (β + γ)σ

2
z

SNyw = γ[(β + γ)(1− δ)σ2z −N−1βδσ2d] +N
−1σ2ε SNzw = γ(1− δ)σ2z

These results are used in the next sections to analyze the question of how
well does the OLS estimator b̂ (and by comparison θ̂) measure the true β.
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3.1 Baseline regression (RI)

RI is misspecified due to an unobserved global effect zt which is corre-
lated with each country regressor. It follows that the POLS estimator θ̂ =
(X 0X)−1X 0Y = θ + (X 0X)−1X 0u is biased for the true parameter since
E(θ̂) = θ = β + γδ. The plim of θ̂ as T →∞ for any fixed N is

plim
T→∞

θ̂ =
N−1P

i S
N
yx

N−1P
i S

N
xx

=
βσ2d + (β + γ)σ

2
z

σ2d + σ
2
z

= β + γδ

and letting N → ∞ subsequently, results in plimN,T→∞ θ̂ = θ = β + γδ.
Hence, θ̂ is inconsistent for β for both large T and N. Its variance is

var(θ̂) ≡ E
h
(θ̂ − θ)(θ̂ − θ)0

i
= E

£
(X 0X)−1X 0uu0X(X 0X)−1

¤
(9)

or var(θ̂) = (X 0X)−1X 0E(uu0)X(X 0X)−1 for uit orthogonal to xjt. Assum-
ing spherical disturbances or E(uu0) = σ2uINT = Σ ⊗ IT with Σ = σ2uIN ,
we have var(θ̂) = σ2u(X

0X)−1. However, for (6) the disturbances of RI con-
tain a random omitted variable which makes the latter inappropriate on two
accounts.
First, the contemporaneous covariance matrix has the following structure

Σ = E(utu
0
t) =


σ2u σij · · · σij

σij σ2u
...

...
. . . σij

σij · · · σij σ2u


since the errors are groupwise homoskedastic E(u2it) = σ2u and have equal
covariances E(uitujt) = σij . It follows that

var(θ̂) = (
NX
i=1

X 0
iXi)

−1(
NX
i=1

NX
j=1

σijX
0
iXj)(

NX
i=1

X 0
iXi)

−1 (10)

which for our DGP particularizes to

var(θ̂) =
σ2uP

t

P
i(xit − x̄)2

+ σij

P
i

P
j 6=i
[
P

t(xit − x̄i)(xjt − x̄j)]

[
P

t

P
i(xit − x̄)2]2

(11)

=
σ2u

NTσ2x
+ σij

(N − 1)σx,ij
NT (σ2x)

2
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where σ2x =
P

i

P
t(xit − x̄)2/NT and σx,ij =

P
i

P
t(xit − x̄i)(xjt − x̄j)/NT.

Since θ̂ is consistent for θ, var(θ̂) can be consistently estimated by substitut-
ing σ̂2u = û

0û/(NT −k) where k is the number of freely estimated parameters
in RII and σ̂ij =

P
i

P
j 6=i û

0
iûj/T

N(N−1) for σ2u and σij , respectively.
Second, although uit is orthogonal to xit by construction, it is correlated

with xjt for j 6= i.5 Hence (11) is still incorrect in assuming that elements
of the form E(xituitxjtujt) in E (X 0uu0X) are equal to E(xitxjt)E(uitujt) or,
more generally, that E (X 0uu0X) = X 0E(uu0)X in (9). The appropriate
asymptotic covariance matrix is

var(θ̂) =
σ2u

NTσ2x
+
(N − 1)φ
NT (σ2x)

2
(12)

where φ = E(xituitxjtujt). An estimator for var(θ̂) is straightforward to
compute using σ̂2u and φ̂ =

PN
i=1

PN
j 6=i(T

−1PT
t=1 x̃itûitx̃jtûjt)/N (N−1) where

x̃it = xit − x̄i and x̃jt = xjt − x̄j. The first term in (12) is the usual POLS
variance formula and the second term may be viewed as a correction for cross-
section dependence of residuals, cov(ûit, ûjt) 6= 0, and dependence between
residuals and regressors for different units, cov(ûit, xjt) 6= 0 arising from
an omitted global variable or shock zt. Consequently, POLS not only gives
biased and inconsistent (for both N, T → ∞) estimators for RI but also
biased standard errors. Formula (12) suggests that the bias of the latter is of
order T−1 and hence it will be non-negligible for small T even if N is large.
In a more generalK-regressor setup, Y = XΘ+u, the appropriate asymp-

totic covariance matrix of the POLS estimator Θ̂ is

var(Θ̂) = (X 0X)−1E(X 0uu0X)(X 0X)−1 = (X 0X)−1Π(X 0X)−1 (13)

where Π is a K ×K matrix with elements

πpp = NTσ
2
xp
σ2u +N(N − 1)Tφpp, πpq = NTσxpqσ2u +N (N − 1)Tφpq

for p, q = 1, ..., K, where σ2xp =
PN

i=1

PT
t=1(xp,it − x̄p)2/NT and σxpq =PN

i=1

PT
t=1(xp,it − x̄p)(xq,it − x̄q)/NT . A consistent estimator v bar(Θ̂) can

5For our simple DGP uit = γ(zt − δxit) + εit with δ = σ2z/(σ2z + σ2d). It follows that
cov(ujt, xjt) = −γδσ2d + γ(1− δ)σ2z = 0. However, cov(ujt, xit) = γ(1− δ)σ2z 6= 0.
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be obtained substituting

φ̂pp =

P
i

P
j 6=i
(T−1

P
t

x̃p,itûitx̃p,jtûjt)

N2
, φ̂pq =

P
i

P
j 6=i
(T−1

P
t

x̃p,itûitx̃q,jtûjt)

N2

for φpp and φpq, respectively.

3.2 Augmented regression (RII)

We start by asking how well wt proxies the unobserved global variable zt.
The plim of their squared sample correlation as T →∞ for any fixed N is

plim
T→∞

ρ̂2zw =
(SNzw)

2

SNzzS
N
ww

=
σ2z

σ2z +N
−1δ2τ2σ2d +N

−1γ−2τ 2σ2ε

where τ = (1−δ)−1. Letting N →∞ also, we have plimT,N→∞ ρ̂
2
zw = 1 and it

follows that for large N and T the first factor for RI residuals is a consistent
estimator of zt. The plim of b̂ as T →∞ for any fixed N is

plim
T→∞

b̂ =
(N−1P

i S
N
ww)(N

−1P
i S

N
xy)− (N−1P

i S
N
xw)(N

−1P
i S

N
yw)

(N−1P
i S

N
xx)(N

−1P
i S

N
ww) − (N−1P

i S
N
xw)

2
(14)

=
βγ2(1− δ)2σ2zσ2d +N−1f1 +N−2g1
γ2(1− δ)2σ2zσ2d +N−1f2 +N−2g2

where

f1 = γ2δβσ4d + (2γ
2βδ − γ2βδ2 + γ3δ)σ2dσ2z + (β + γδ)σ2εσ2z + βσ2εσ2d,

f2 = γ2δ2σ4d + (2γ
2δ − γ2δ2)σ2dσ2z + σ2εσ2z + σ2εσ2d),

g2 = −γ2δ2σ4d and g1 = γδσ2εσ2d − γ2δ2βσ4d
Making N →∞ also it follows that b̂ is a consistent estimator for β since

plim
N,T→∞

b̂ =

plim
N→∞

(βγ2(1− δ)2σ2zσ2d +N−1f1 +N−2g1)

plim
N→∞

(γ2(1− δ)2σ2zσ2d +N−1f2 +N−2g2)
= β

Some remarks are in order. First, the inconsistency of b̂ for fixed N re-
flects the endogeneity bias which arises because the principal components
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are averages of RI disturbances, wt =
P

i aiuit where uit = γηit + εit. Hence,
there is correlation between wt and RII disturbances which also contain εit.
However, the weight of εit in the former (ai) falls as N increases and so
does the endogeneity bias. Second, since corr(xit, xjt) = σ2z/(σ

2
z + σ

2
d), if we

let σ2d → 0 then the regressors are identical across equations. In this case
plimT,N→∞ b̂ = β + γδ and there are no gains from RII over RI. Third, al-
though the foregoing theoretical results (large T, large N consistency of b̂) are
derived for a homogeneous panel with identical β and γ across units, we con-
jecture that similar results apply to heterogenous panels. This is investigated
via Monte Carlo simulations in §4.
The variance of the POLS estimator of a = [b c]0 in RII is

var(â) ≡ E [(â− a)(â− a)0] = (X 0X)−1E (X 0vv0X) (X 0X)−1 (15)

where X is an NT × 2 matrix. As shown above ρ̂zw converges in probability
to 1 as T →∞ and N →∞. However, to the extent that wt is not a perfect
measure of the unobserved zt in finite samples, there will be cross-equation
dependence in the disturbances, E(vit, vjt) 6= 0, and between disturbances
and regressors E(vit, xjt) 6= 0 for i 6= j. Hence E(X 0vv0X) 6= X

0
E(vv0)X.

This suggests estimating var(â) using an analogous formula to (13).

3.3 Serial dependence and heteroskedasticity

The assumption that dit and zt are iid processes is relaxed by letting

dit = ρddi,t−1 + εd,it, εd,it ∼ iid(0, σ2d)
zt = ρzzt−1 + εz,t, εz,t ∼ iid(0, σ2z)

with −1 < ρd,ρz < 1. This introduces the serial correlation typical of eco-
nomic variables in the disturbances of RI (and RII). In particular, the matrix
E(X

0
vv0X) in (15) will have also nonzero elements E(xitvitxjsvjs) for t 6= s.

By letting εd,it ∼ iid(0, σ2d,i) the heterogeneous variance of the idiosyncratic
influence in xit introduces groupwise heteroskedasticity in RI and RII errors.
In particular, for RI we have

E(u2it) = γ
2(1− δ)2σ2z + γ2δ2σ2d,i

By rewriting (6) as yit = βxit + γiwt + γi(zt − wt) + εit it follows that vit =
γi(zt−wt)+ εit in RII. Hence to the extent that wt 6= zt, letting γi 6= γj will
also introduce heteroskedasticity in RII residuals.
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We conjecture that the unbiasedness and consistency of b̂, the (POLS) es-
timator of RII slope coefficient, carry over to more complex setups. However,
an appropriate asymptotic var(b̂) is needed. The latter has to account not
only for contemporaneous dependences– such as cov(v̂it, v̂jt) and cov(v̂it, xjt)
which arise in finite samples to the extent that wt does not perfectly measure
zt – but also serial dependence and groupwise heteroskedasticity.

4 Monte Carlo Analysis

Monte Carlo simulations are employed to assess the finite sample properties
of the proposed estimation approach. The following DGP is used

dit = ρdidi,t−1 + εdi,t; εdi,t ∼ NID(0, σ2d,i)
zt = ρzzt−1 + εzt; εzt ∼ NID(0, σ2z)
xit = dit + λizt

yit = βixit + γizt + εit; εit ∼ NID(0, σ2ε,i)

In the first set of simulations, reported in Table 1, it is assumed ρdi = ρz =
0, σ2z = σ2d,i = σ2ε,i = 1 and λi = βi = γi = 1. In a second set, reported
in Table 2, we assume σ2d,i ∼ U [0.5, 1.5] and γi ∼ U [0.5, 1.5] to introduce
groupwise heteroskedasticity and ρdi = ρz = 0.9 to introduce serial correla-
tion. The panel dimensions N, T = {30, 300} and N, T = {30, 25} which are
typical of monthly and annual PPP studies, respectively, are used. R = 500
replications are employed throughout. We estimate RI and RII – where wt
is the first factor extracted from the equation-by-equation OLS residuals of
RI – using the POLS, FE and MG estimators.6

The comparison focuses on the bias of the slope estimator and on the
difference between the true standard errors (s.e.) and various estimates of
them. The former is measured by the sample standard deviation (SSD) of the
slope estimates over replications while the latter is measured by the sample
mean (SM) of the estimated s.e. For comparative purposes, Table 1 reports
three s.e. estimates for the pooled estimators. These are SE1 based on the
conventional formula s2(X 0X)−1, SE2 using (10) and SE3 based on (13).7

6All computations were performed in GAUSS version 3.2.32.
7For the MG estimator SE(θ̂

MG
) = σ(θ̂i)/

√
N where σ(θ̂i) is the standard deviation

of the individual OLS estimates.
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The mean slope estimates for RI reported in Table 1(A-B) are in line with
the theoretical bias at 0.5 for the baseline DGP. Those for RII reveal that
the proposed approach succeeds in reducing bias. As expected for RI, SE1
underestimates the true s.e. because of neglected non-zero cov(ûit, ûjt) and
cov(ûit, xjt) caused by zt.8 The SE2 underestimate the true s.e. also because
of failing to account for cov(ûit, xjt) 6= 0. By contrast, the SM(SE3) matches
the SSD(θ̂) quite well. However, this is not the case for RII where there is
still some underestimation in SE3 particularly for the annual panel. The
reasons underlying this bias warrant further investigation.
If our baseline DGP is modified to have a common global influence or-

thogonal to the regressors by letting xit = dit + λiz2t and yit = βixit +
γiz2t+εit where cov(z2t, z1t) = 0 ceteris paribus, it follows that cov(ûit, xjt) =
cov(v̂it, xjt) = 0. Unsurprisingly, simulations show that SM(SE2) and SM(SE3)
are reasonably close for both RI and RII. Again these estimators match the
true s.e. for RI (and SE1 underestimates it) and they are biased downwards
for RII. For a simpler DGP where λi = 0 ceteris paribus, SE1 ' SE2 '
SE3 are correct in RI. The latter can be explained by the fact that, al-
though cov(ûit, ûjt) 6= 0 the second term in (11) and (12) vanishes because
cov(xit, xjt) = 0. This result (correct SE1) also emerges in RII.9 These exper-
iments suggest that there is an additional effect in RII (over RI) not captured
by any of the covariance matrices considered and which becomes apparent
when cov(xit, xjt) 6= 0.
When the assumptions of groupwise homoskedastic and non autocorre-

lated errors are relaxed, the proposed approach continues to reduce bias
substantially as Table 2(A-B) shows. Unsurprisingly, for this DGP none
of the available covariance matrices provides accurate estimates of the true
standard errors, not even for RI. Formula (13) fails to account for the autocor-
relation pattern while the Newey-West covariance estimator for panels does
not account for the cross-equation correlations cov(ûit, ûjt) and cov(ûit, xjt).10

Finally the baseline DGP is modified to introduce slope coefficient hetero-

8The biased SE1 for the MG estimator may stem from non-zero covariances between
the coefficient estimates for each group driven by a common bias term δγ.

9 In the case where the unobservable global variables are uncorrelated with the regressors
our approach offers efficiency gains – borne out by SSD(b̂)¿SSD(θ̂) – like SURE-GLS.
However, our approach has the additional advantage that no restriction is imposed on the
relation between N and T .
10The s.e. from (13) and Newey-West (L=2) are .0561(.0277) and .0408(.0266) for FE

and POLS, respectively, for RI and .0285(.0215) and .0197(.0148) for RII (annual panel).
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geneity and differences in the response of cross-section units to the common
influence by letting βi ∼ U [0.5, 1.5],λi ∼ U [0.5, 1.5] and γi ∼ U [0.5, 1.5]. The
mean slope estimate over replications for RI(RII) is 1.492(1.081), 1.493(1.082)
and 1.517(1.118) for the POLS, FE and MG estimators, respectively. These
results support our conjecture that the proposed approach is suitable for
heterogeneous panels also.
There remain two unresolved questions regarding the standard errors.

One is to ascertain why SE3 are incorrect in RII while they work quite well
in RI for our baseline DGP. The other is to derive the theoretical covariance
matrix for the estimators of RII in a DGP with autocorrelation. One possible
solution is to implement a bootstrap technique. However, the consistency (or
otherwise) of the bootstrap s.e. in our setup may well depend on the answer
to the first question.
We investigate the number of factors problem via simulations. We ex-

amine the rule of thumb (known as Kaiser criterion) that only those factors
whose associated eigenvalues λi > 1 are retained. The intuition for the latter
is that – since the factors are extracted from standardized residuals – un-
less a factor extracts as much variation as one original variable it is dropped.
For our baseline DGP the number of factors thus chosen ranges between 9
and 12 (with mean 10.61 and standard deviation .027) for the annual data
panel and between 7 and 11 (mean 9.07 and standard deviation .028) for
the monthly panel over 500 replications. Hence the Kaiser criterion is too
conservative and this raises issues of interpretation in an economic context.11

Next we explore the performance of the recent Bai and Ng (2002) ap-
proach for selecting the number of factors in approximate factor models.
They formulate this non-standard problem as a model selection problem and
propose minimizing, inter alios, the following two information criteria

ICp1(τ) = lnV (τ , Ŵτ ) + τ

µ
N + T

NT

¶
ln

µ
NT

N + T

¶
(16)

ICp2(τ) = lnV (τ , Ŵτ ) + τ

µ
N + T

NT

¶
lnC2NT (17)

where C2NT = min{N, T} and V (τ , Ŵτ ) = ê
0
ê/NT is the average residual

variance of a factor model where τ factors are assumed for each cross-section
11Nevertheless, including too many factors does not seem to have an adverse effect on

bias reduction. This is borne out by the sample mean of b̂ at some 1.069 (POLS) and
1.072 (FE) for the annual panel and 1.096 (POLS, FE) for the monthly panel.
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unit. They demonstrate the consistency of these and other criteria and their
simulations show that they are fairly robust provided min{N, T} > 40. One
important difference between our setup and that in Bai and Ng is that our
factors are extracted from residuals rather than observed variables such as
returns. Accordingly, we considered two cases for V (τ , Ŵτ ). One is based on
the equation-by-equation OLS residuals of the τ−factormodel u =WτA0τ+E.
A second version which is more in the spirit of our approach is based on the
equation-by-equation OLS residuals of RII. Setting as τmax the number of
factors dictated by Kaiser criterion and using the two DGPs described in the
foregoing analysis (where the true number of factors is J=1) the outcome
of these criteria is averaged over 500 replications. In all cases the criteria
systematically choose one factor for both the small and large panels.
Next our DGP is generalized to J ≥ 1 omitted global variables ceteris

paribus by letting

xit = dit +
JX
j=1

λijzjt; yit = βixit +
JX
j=1

γijzjt + εit

where zjt for j = 1, ..., J are orthogonal to each other and λij and γij are
N(1, 1) variates. Setting J = 2 the average of τ̂ over replications for the
annual panel dimensions is 2.052 (with standard deviation of 0.4536) for the
baseline DGP and 4.146 (2.375) for the DGP with autocorrelation and het-
eroskedasticity. For the monthly panel these figures are 2 and 2.889 (1.881),
respectively.12 Notwithstanding that min{N, T} < 40 for both the annual
and monthly panels and despite extracting the factors from residuals, these
criteria appear to perform reasonably well in this context.

5 Application to PPP equations

The issue of cross section dependence in empirical tests of PPP was recently
hightlighted by O’Connell (1998). He showed that assuming one (stationary)
common shock reversed the positive verdict on PPP (from tests ignoring such
dependence) for three out of four interational panels. We employ monthly

12Using xit =
√
Jdit +

PJ
j=1 λijzjt instead so that the idiosyncratic and common com-

ponent of xit have the same variance, the results for the annual and monthly panel are
2.296 (1.013) and 2.0 for the baseline DGP.
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observations for the nominal exchange rate and price index variables, 1972:1-
1998:12, giving T = 324 observations. Four panels are constructed which
represent different combinations of price indexes and numeraire currencies.
The CPI-DM and CPI-US$ panels use consumer price index data and nom-
inal exchange exchange rates against the German mark and US dollar, re-
spectively. The WPI-DM and WPI-US$ panels are based on wholesale price
indexes.13

The following two PPP equations are considered:
i) Augmented Dickey-Fuller (ADF) type regression:

∆qit = α0i + α1it+ ρiqi,t−1 +
kX
j=1

γj∆qi,t−j + uit (18)

where qit = eit − dit represents the real exchange rate, dit = pit − p∗t is the
price differential between domestic country i and the foreign country, and all
variables are in logarithms.
ii) Autoregressive distributed lag (ARDL) regression:

∆eit = αi + βi∆dt + δ1iqi,t−1 + γ idi,t−1 +
kX
j=1

γ1ji∆ei,t−j +
kX
j=1

γ2ji∆di,t−j + uit

(19)

which is a reparameterization of an analogous equation with ei,t−1 as regressor
instead of qi,t−1, where the coefficients on the former and on di,t−1 are δ1i and
δ2i, respectively, with γi = δ1i + δ2i.
The average correlations between the cross-section OLS (standardized)

residuals are shown in Table 3 together with the condition number and p-
values of a diagonality test. All these indicate a considerable degree of cross-
section dependence. This is especially so for the dollar panels where the
depdendence may well reflect the large swings in the dollar during the 1980s.
The number of retained factors (λi > 1) is also reported in Table 3.
Panel regressions are estimated with and without factors. Table 4 reports

the estimated coefficients and t-ratios on the factors. The t-ratio on the single

13The CPI panels comprise N = 17 countries, Austria, Canada, Denmark, Finland,
Germany, Greece, Japan, Netherlands, Sweden, Spain, Switzerland, United Kingdom,
United States, Belgium, France, Italy, Norway, Portugal. The WPI panels exclude the
latter five countries and instead include Ireland to make N = 13.
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factor included in the US$ panel regressions is quite high. In the DM panels
where τ̂ = 3 and 2, the t-ratio on the first factor is dramatically larger than
that for the other two. Since – as suggested by the Monte Carlo simulations
for the monthly panel dimensions – the conventional standard errors for
these panel estimators underestimate the true ones by almost 50%, these
results can be taken as prima facie evidence that just one factor is significant
in the DM panels also.14 This is clearly corroborated by the Bai and Ng
(2002) criteria (16) and (17). For instance, using RII residuals in V (τ , Ŵτ),
for the ADFmodel ICp1 gives 3.655(τ = 3), 3.611(τ = 2) and 3.550(τ = 1) for
the CPI-DM panel and 3.608(τ =2) and 3.552(τ =1) for the WPI-DM panel.
Inspection of the factors graphs does not suggest any obvious interpretation.
Tables 5(A-B) summarise the estimation results.15 While the restrictions

−2 < ρi < 0 (ADF model) and γi = 0 (ARDL) both imply long-run PPP,
there is a subtle difference between them. The latter restriction only implies
that changes in relative prices are reflected one-for-one in nominal exchange
rates, but the former is more restrictive. It additionally requires real exchange
rates to be I(0) variables.16 The regression results indicate that the inclusion
of factors has a small but consistent impact on the coefficient estimates.17 In
11 out of 12 cases, the inclusion of factors makes ρ more negative strength-
ening the evidence in favour of PPP. In 10 out of the 12 cases, the included
factors move γ closer to zero, again making the evidence more favourable
toward PPP. The effects seem stronger for the dollar than the DM panels.
How do our PPP results compare with those from panel unit root or

cointegration approaches accounting for cross section dependence? On one
hand, our findings contrast with the results of both Moon and Perron (2001)
and O’Connell (1998) which strongly reject the PPP hypothesis. On the
other, they are in line with those of Pedroni (1997) whose panel cointegration
tests support weak PPP and with those of Bai and Ng (2001a) who find some
evidence for PPP using a common-idiosyncratic decomposition.

14Repeating the simulations with the panel dimensions of our PPP data, N = 13 and
T = 324, gives a qualitatively similar ratio SM(SEb̂)/SSD(b̂) of 0.56 (FE) and 0.57 (POLS).
15Note that the nominal exchange rate is normalized on the base year (1995) for the

POLS regression to prevent biases arising from pooling observations in different metrics.
16On the basis of panel regressions of spot rates on price differentials a consistent esti-

mator may suggest a long-run slope coefficient equal to one while real exchange rates are
non-stationary. This issue is discussed in Coakley, Fuertes and Smith (2001).
17This is probably related to the high correlation between regressors in PPP equations

due to a common numeraire which, as with SURE-GLS, erodes the gains from our ap-
proach.
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6 Conclusions
In the context of large N and T panels it is important to confront the is-
sue of cross-section dependence. Such dependence may arise from omitted
unobservable global variables or common shocks which may be correlated
with each group regressor. In this paper we propose a two-stage estimation
method to deal with these. First one extracts principal components from the
residuals of the model of interest. These factors can be used to augment the
original regression equations to proxy possible omitted variables. A compar-
ison of parameter estimates across the regression models with and without
factors may provide some insights into the nature of these group depen-
dences, namely, whether they represent exogenous world shocks or omitted
global variables correlated with the regressors. In contrast to two-way FE,
this approach can be used in models with heterogeneous slope coefficients
across countries and when there are multiple omitted variables to which each
country reacts differently. Moreover, in contrast to SURE-GLS it can be
applied to large N panels. Using sequential limit theory it is shown that, for
a simple DGP with no autocorrelation or groupwise heteroskedasticity, the
POLS slope coefficient estimator of the augmented regression is consistent.
For panel dimensions typical of the PPP literature and using POLS, FE and
MG estimators, Monte Carlo simulations also confirm the bias reduction for
a DGP with serial dependence and heteroskedasticity.
The proposed approach is illustrated by means of a PPP application

for a group of 17 OECD countries 1973:1-1998:12. We find that between-
group dependence is clearly significant in PPP equations and that it is much
stronger in the US dollar than in the German mark panels. In all panels
and PPP equations a minimum of one of the unobserved factors is clearly
significant. Moreover, the impact of the factors on the augmented regression
coefficients seems to strengthen support for long run PPP.
Finally the paper suggests various issues which warrant further research.

One is to derive the appropriate asymptotic covariance matrix of the above
panel estimators for the augmented regression. Absent the latter, another is
to investigate whether a bootstrap technique might provide consistent stan-
dard errors in this setup. The case where the omitted variables are I(1) also
needs consideration. It is hoped that the present contribution may motivate
a more formal treatment of the ideas and approach elaborated in this paper.
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Table 1A. Monte Carlo simulation results
N = 30, T = 300, γi = 1,ρdi = 0, ρz = 0, σ

2
di = 1

A) Regression I
Mean SSD Min. Max. Skew. Kurt-3

MG estimator

θ̂ 1.4983 .0217 1.4243 1.5584 .0544 .0215
SE1(θ̂) .0083 .0011 .0056 .0116 .1819 -.2505
FE estimator

θ̂ 1.4975 .0216 1.4244 1.5579 .0593 .0299
SE1(θ̂) .0092 .0002 .0087 .0096 -.1818 .0738
SE2(θ̂) .0169 .0003 .0161 .0179 .2264 .2835
SE3(θ̂) .0222 .0014 .0189 .0291 .7026 1.3561
POLS estimator

θ̂ 1.4967 .0216 1.4232 1.5573 .0589 .0382
SE1(θ̂) .0092 .0002 .0087 .0096 -.1829 .0829
SE2(b̂) .0169 .0003 .0161 .0179 .2299 .3072
SE3(θ̂) .0221 .0015 .0180 .0277 .5705 .6412
B) Regression II

Mean SSD Min. Max. Skew. Kurt-3
MG

b̂ 1.0987 .0165 1.0503 1.1464 .2764 -.1859
SE1(b̂) .0100 .0013 .0063 .0137 .1158 -.0758
FE

b̂ 1.0980 .0163 1.0517 1.1459 .2769 -.1551
SE1(b̂) .0097 .0001 .0094 .0101 .0156 -.0846
SE2(b̂) .0098 .0001 .0095 .0103 .2678 .1741
SE3(b̂) .0109 .0006 .0092 .0133 .2375 .3445
POLS

b̂ 1.0977 .0163 1.0506 1.1453 .2678 -.1418
SE1(b̂) .0097 .0001 .0094 .0100 .0219 -.1046
SE2(b̂) .0098 .0001 .0095 .0103 .2678 .1635
SE3(b̂) .0109 .0006 .0093 .0131 .2703 .2165

Note: SE1 is based on the usual covariance matrix formulae for the MG, FE and
POLS estimators. SE2 is based on (10) and SE3 is based on (13).
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Table 1B. Monte Carlo simulation results
N = 30, T = 25, γi = 1, ρdi = 0, ρz = 0, σ

2
di = 1

A) Regression I
Mean SSD Min. Max. Skew. Kurt-3

MG

θ̂ 1.5070 .0766 1.2645 1.7224 -.2967 .0069
SE1(θ̂) .0305 .0048 .0171 .0479 .2111 .0868
FE

θ̂ 1.4966 .0754 1.2460 1.7053 -.3233 .0326
SE1(θ̂) .0322 .0020 .0259 .0378 -.0169 -.1542
SE2(θ̂) .0567 .0035 .0465 .0659 .0043 -.0825
SE3(θ̂) .0716 .0137 .0410 .1318 .8815 1.2679
POLS

θ̂ 1.4869 .0751 1.2406 1.6989 -.3207 .0052
SE1(θ̂) .0317 .0019 .0256 .0375 -.0124 -.1353
SE2(θ̂) .0567 .0034 .0461 .0656 .0082 -.0888
SE3(θ̂) .0717 .0132 .0366 .1296 .4597 .2201
B) Regression II

Mean SSD Min. Max. Skew. Kurt-3
MG

b̂ 1.1384 .0734 .9472 1.4178 .3728 .2719
SE1(b̂) .0374 .0052 .0201 .0539 .1556 -.1378
FE

b̂ 1.1279 .0709 .9565 1.3694 .3425 .2523
SE1(b̂) .0341 .0015 .0278 .0378 -.0736 .1013
SE2(b̂) .0355 .0024 .0297 .0488 .6921 1.3834
SE3(b̂) .0406 .0076 .0246 .0801 .8646 1.8745
POLS

b̂ 1.1243 .0689 .9539 1.3793 .3591 .2305
SE1(b̂) .0335 .0016 .0279 .0386 -.1084 .1745
SE2(b̂) .0355 .0024 .0299 .0492 .7604 1.8043
SE3(b̂) .0392 .0076 .0220 .0642 .5005 .2672
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Table 2A. Monte Carlo simulation results
N = 30, T = 300, γi ∼ U [0.5, 1.5], ρdi = ρz = 0.9, σ2di ∼ U [0.5, 1.5]
A) Regression I

Mean SSD Min. Max. Skew. Kurt-3
MG

θ̂ 1.4110 .0637 1.2563 1.6184 .1564 -.1977
SE1(θ̂) .0234 .0034 .0137 .0365 .0983 .0359
FE

θ̂ 1.4053 .0629 1.2459 1.5887 .1382 -.2571
SE1(θ̂) .0065 .0002 .0060 .0072 .1899 -.0861
POLS

θ̂ 1.3899 .0619 1.2368 1.5744 .1564 -.1977
SE1(θ̂) .0064 .0002 .0059 .0071 .0770 -.1795
B) Regression II

Mean SSD Min. Max. Skew. Kurt-3
MG

b̂ 1.0397 .0154 1.0065 1.1210 .9317 1.7659
SE1(b̂) .0060 .0013 .0031 .0121 .7812 1.1088
FE

b̂ 1.0373 .0158 1.0077 1.1058 .7595 .8561
SE1(b̂) .0044 .0002 .0039 .0053 .6836 .6280
POLS

b̂ 1.0351 .0150 1.0054 1.0959 .7117 .6410
SE1(b̂) .0043 .0002 .0039 .0051 .6538 .4204
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Table 2B. Monte Carlo simulation results
N = 30, T = 25, γi ∼ U [0.5, 1.5],ρdi = ρz = 0.9, σ2di ∼ U [0.5, 1.5]
A) Regression I

Mean SSD Min. Max. Skew. Kurt-3
MG

θ̂ 1.4443 .1499 1.1098 1.9150 .3441 -.2593
SE1(θ̂) .0456 .0090 .0248 .0750 .4310 -.0399
FE

θ̂ 1.4104 .1405 1.0860 1.8757 .2773 -.2972
SE1(θ̂) .0253 .0018 .0192 .0319 .0469 .5201
POLS

θ̂ 1.2865 .1238 1.0495 1.7040 .6528 .2045
SE1(θ̂) .0224 .0020 .0169 .0324 .4613 1.2229
B) Regression II

Mean SSD Min. Max. Skew. Kurt-3
MG

b̂ 1.1053 .1215 .9606 1.9167 2.9186 12.1884
SE1(b̂) .0312 .0071 .0173 .0669 1.2112 2.5237
FE

b̂ 1.0793 .1022 .9661 1.8435 3.1859 14.5451
SE1(b̂) .0230 .0018 .0186 .0291 .3763 -.1251
POLS

b̂ 1.0514 .0804 .8759 1.6655 3.5172 18.5723
SE1(b̂) .0187 .0025 .01389 .0344 1.2047 3.1074

24



Table 3. Between-group correlations and retained factors
ADF ARDL

Panel r̄ γ λLR τ r̄ γ λLR τ

CPI-DM
.265 8.641 1956 3

[.000]
.274 8.288 2023 3

[.000]

CPI-US$
.645 24.85 7274 1

[.000]
.651 19.75 7059 1

[.000]

WPI-DM
.272 7.836 1550 2

[.000]
.275 7.419 1544 2

[.000]

WPI-US$
.619 19.60 4859 1

[.000]
.613 17.70 4869 1

[.000]
Note: r̄ is the average cross-section correlation, γ = (λmax

λmin
)1/2 is the condition

number, λLR is the p-value of Breusch-Pagan diagonality test on the residual
correlation matrix and τ is the number of factors retained by Kaiser criterion. All
of these are computed from the equation-by-equation OLS residuals.
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Table 4. Estimated coefficients and t-ratios on included factors
ADF model

CPI-DM CPI-US$ WPI-DM WPI-US$

MG
.0927 .0129 -.0174
[6.79] [.68] [-.75]

.1375
[15.31]

.1131 .0124
[5.59] [.42]

.1570
[12.02]

FE
.0924 .0126 -.0166
[47.56] [3.57] [-3.83]

.1372
[107.69]

.1127 .0119
[45.67] [2.39]

.1568
[91.38]

POLS
.0924 .0122 -.0156
[47.44] [3.46] [-3.58]

.1370
[105.21]

.1125 .0116
[45.43] [2.32]

.1567
[90.95]

ARDL model
CPI-DM CPI-US$ WPI-DM WPI-US$

MG
.0881 .0109 .0227
[6.36] [.63] [1.15]

.1360
[15.32]

.1087 .0029
[5.36] [.10]

.1530
[11.71]

FE
.0882 .0091 .0223
[48.39] [2.64 [5.52]

.1356
[112.45]

.1092 .0024
[45.91] [.52]

.1533
[92.29]

POLS
.0883 .0088 .0218
[48.46] [2.55] [5.39]

.1356
[110.72]

.1092 .0026
[45.85] [.56]

.1533
[92.29]
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Table 5(A). Long run PPP coefficient estimates (CPI)
MG FE POLS

i)DM
ADF
ρ̂ [SE1] -.0377[.0037] -.0237[.0029] -.0127[.0018]
ADF(Ŵτ)
ρ̂ [SE1] -.0398[.0036] -.0247[.0024] -.0131[.0015]
ARDL
γ̂ [SE1] -.01967[.0069] -.0044[.00079] -.0045[.00071]
ARDL(Ŵτ)
γ̂ [SE1] -.01989[.0087] -.0041[.00066] -.0041[.00059]
ii) US$
ADF
ρ̂ [SE1] -.0256[.0017] -.0225[.0028] -5.96e-5[.00021]
ADF(Ŵτ)
ρ̂ [SE1] -.0274[.0019] -.0245[.0016] -4.86e-5[.00012]
ARDL
γ̂ [SE1] -.0064[.0056] -.0025[.0014] -.0034[.0012]
ARDL(Ŵτ)
γ̂ [SE1] -.0024[.0030] -.0024[.00077] -.0040[.00067]
Note: Tables 5A-5B report the estimation results for two dynamic PPP equa-

tions, ADF and ARDL. The number of augmentation lags is conservatively set at
k=6 in all equations to eliminate serial correlation. ADF(Ŵτ) and ARDL(Ŵτ )
denote the models with τ factors as additional regressors. The conventional s.e.
for the MG, POLS and FE estimators are in brackets. These are likely to be biased
downwards in all regressions.
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Table 5(B). Long run PPP coefficient estimates (WPI)
MG FE POLS

i) DM
ADF
ρ̂ [SE1] -.0524[.0050] -.0317[.0041] -.0178[.0029]
ADF(Ŵτ)
ρ̂ [SE1] -.0559[.0053] -.0346[.0033] -.0192[.0023]
ARDL
γ̂ [SE1] -.0069[.0047] -.0025[.0011] -.0033[.00092]
ARDL(Ŵτ)
γ̂ [SE1] -.0053[.0054] -.0023[.00089] -.0028[.00075]
ii) US$
ADF
ρ̂ [SE1] -0.0311[.0019] -0.0279[.0038] -0.0209[.0032]
ADF(Ŵτ)
ρ̂ [SE1] -0.0346[.0018] -0.0314[.0022] -0.0234[.0019]
ARDL
γ̂ [SE1] -0.0099[.0034] -0.0037[.0017] -0.0022[.0013]
ARDL(Ŵτ)
γ̂ [SE1] -0.0030[.0024] -0.0021[.00097] -0.0020[.00072]
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