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Abstract

In this paper we develop a suitable dynamic discrete time bivariate
probit model, in which the conditions for Granger non-causality may be
represented and tested. The conditions for simultaneous independence are
also worked out. The model is extended in order to allow for covariates,
representing individual as well as time heterogeneity. The proposed model
may be estimated by Maximum Likelihood; Granger non-causality, as
well as simultaneous independence may be tested by Likelihood Ratio
tests. A specialized version of the model, aimed at testing Granger non-
causality with bivariate survival data is also discussed. The proposed
tests are illustrated using data concerning the relation between marriage
and fertility timing in a sample of 266 American women and the adoption
of two interrelated technological innovations by 552 Italian metalworking
plants.
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1 Introduction

The epistemological status of the statistical-probabilistic notion of causality
based on predictability is still a matter of profound controversy among philoso-
phers and methodologists (see Geweke, 1984). This notion fits, in a probabilistic
sense, two key aspects of causation: the systematic conjunction of cause and
effect, and the time precedence of the cause with respect to the effect. Nonethe-
less, it fails to account for what probably is the deepest, though empirically less
helpful, aspect, i.e. the idea that the cause “forces” or “produces” the effect.
Despite these limitations, the notion of causality based on predictability proved
to be a valuable tool for applied research thanks to its operational usefulness
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in the construction, estimation, interpretation and application of econometric
models.

In a general setting (see Florens and Fougere, 1996), a mathematically rigor-
ous definition of non-causality based on predictability requires the specification
of the stochastic process to be predicted, the available information set, and the
reduced information set. Although several generalizations exist, we will briefly
review here the concept of discrete time one step ahead strong non-causality (the
terminology is drawn from Florens and Fouggre,1996). Here one step ahead (as
opposed to global) is referred to the prediction horizon, whereas strong (as op-
posed to weak) means that the focus is on predicting the whole distribution,
rather than just the mean. Notice that Granger’s (1969) original definition is
stated in terms of the mean. Chamberlain (1982) and Florens and Mouchart
(1982) propose the definition involving the whole distribution (see also Granger,
1988).

Let {Y; = (Y}},Y2) ,t € I CN={0,1,...}}, or {¥;} for short,' be a discrete
time vector stochastic process. This means that, for any positive integer ¢ € I,
Y; is a vector random variable on a probability space (2,4, P). P is an element
of a family of probability measures, and the statistical problem of non-causality
is to test whether P satisfies non-causality conditions.

The available information is described by F;, which is a sub-o-field of A. It
is assumed that the family {F;,t € I}, briefly {F:} is a filtration, i.e. Fy C Fy
for t < ¢'. For simplicity, we will assume here that F; is the canonical filtration
associated to the multivariate stochastic process {(¥z, X3)} = {(¥', Y2, X¢) },2
where each of {¥}'}, {¥?} and {X;} may either be scalar or vector processes.
This of course implies that {Y;} is adapted to {F;}, i.e. Y; is Fy-measurable for
any t € I.

The reduced information set is represented by the filtrations {G} } and {G?}.
We will assume that {G} } is the canonical filtration of { (¥}',X;)}, and {G}} is
the canonical filtration of {(Y,X;)}, which implies that ¥}! is G}-measurable
and Y}? is G7-measurable for any ¢ € I. Let then {V}}, {V?} and {J;} be the
canonical filtration associated to the processes {¥;'}, {¥?} and {¥;} respec-
tively. Notice that Y} C G} C F;,Vt € I, and similarly Y2 C G2 C F;,Vt € 1.

In the paper, we will adopt the following definitions, stated in terms of
conditional independence of sub-o-fields of A (see Florens and Mouchart, 1982,
Appendix, for the relevant results about conditional independence):

Definition 1 - Strong one step ahead non-causality (Granger non-causality):
Y2 | does not strongly cause Y} one step ahead, given Gi_,, briefly Y' « Y2,
if

Vi LYV 1Gi viel (1)

I'The following notation is used through the paper: {Z:} denotes a stochastic process, Z;
being the value of the process at time ¢; {z:} and 2; represent the corresponding realizations.
Moreover, Pr{z: | w:} is adopted as a short notation for Pr{Z; = 2z | Wi = w}.

2The canonical (or self ezciting) filtration associated to the process {Z:} defined on
(Q, A, P) is a family {F:} of sub-o-fields of A, whose element F; is the o-field generated
by the family of Zs, 0 < s < ¢. Intuitively, F: embodies the knowledge of the history of {Z;}
up to time ¢.




Similarly, Y} | does not strongly cause Y;? one step ahead, given G7_,, briefly
Y1 » Y2 if
Vi LY 16 Vtel (2)

Definition 2 - Strong simultaneous independence: Y;' and Y are strongly
simultaneously independent given {F;}, briefly Y1 < Y2, if

Vi LY Fea Veel (3)

Notice that the term simultaneous in the latter definition has exactly the
same meaning as instantaneous in Geweke (1984) and Granger (1988). A differ-
ent term is suggested here since, rigorously, Florens and Fougeére (1996) observe
that one step ahead non-causality in discrete time has an analogue in continu-
ous time when the time distance between “cause” and “effect” goes to zero, a
circumstance that they define as instantaneous causality. Therefore, in discrete
time, they use instantaneous as a synonym for one step ahead, while they do
not give any definition similar to 3. Moreover, for the simultaneous condition
(3), the term dependence is proposed instead of causality (as in Granger, 1988)
or feedback (as in Geweke, 1984), since the notion is completely a-directional in
nature (not even bi-directional).

In Economics, the notion of non-causality has been mainly used in modelling
macroeconomic variables, and hence {Y}' } and {¥;*} are usually assumed to be
continuous processes, the exogenous processes {X;} are often not included in
the information set (so that G} and G? do coincide with }} and )? respectively),
and one single realization of {Y;} is observed. In this framework, non-causality
is usually tested assuming that {Y;} belongs to the class of Vector ARIMA pro-
cesses. In microeconometric applications, where the variables are often quali-
tative and longitudinal data are usually available, the VARIMA framework is
not appropriate, and including covariates to account for individual heterogene-
ity becomes an essential aspect of modelling. Therefore, a set of ad hoc tools
has to be developed in order to make the above definitions of non-causality
operational.

In this paper the case where {Y;} is a bivariate discrete time binary process
will be addressed.® This case is shortly discussed in Chamberlain (1982). We will
assume that N individual realizations (i = 1,..., N) of the process are observed,
with ¢t = 1,...,T. As we will see, depending on the dynamic structure of the
model, N might have to be large with respect to T', but if very simple dynamic
structures are assumed, a small N, or even N = 1, might be enough if T is large.
Notice that, in this case, {X;} is needed to model individual heterogeneity, and
might well include some time fixed variables.

In our framework, at any time ¢t € {1,...,T}, the state space of ¥; =
(Y',Y?) is given by the following states: {(0,0);(1,0);(0,1);(1,1)}.

Essentially the model may be represented by the diagram in Figure 1, where
each box represents one of the four states where the process could belong at time
(t — 1), and the arrows represent the transitions which might occur at time t.

3The case where {Y,!'} and {Y;?} are continuous time counting processes (t € I C Rt) is
addressed in the literature (Florens and Fouggre, 1996; Schweder, 1970; Aalen, 1987).
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Figure 1: State-Transition Diagram for a Binary Bivariate Markov Model

Let us illustrate how definitions (2)-(3) may be made operational by applying
them to a precise stochastic process and information set. To make the simplest
possible example, let us restrict the information set to the canonical filtration
associated to {Y;}, and furthermore make the assumption that {Y;} is a Markov
process (or Markov chain), so that

Pr{y: | ys—1,---,90} =Pr{y: | ys—1}

The most restrictive definition of Markov process requires that the transition
probabilities do not vary over time. More specifically, under this assumption the
process is defined a Markov chain with stationary transition probabilities. Notice
that the assumption of stationary transition probabilities alone does exclude any
impact of covariates on the transition probabilities. In this simplified framework,
the definitions given above specialize as follows:

Definition 3 - Strong one step ahead non-causality for a Markov chain with
stationary transition probabilities: Y2, does not strongly cause Y;' one step
ahead, given Y}l |, if

Pr{y |ye—1} =Pr{y; |yi_,} Vee {1,...,T} (4)

4The equivalence between (2) and (4) in this framework comes immediately by noticing
that, under the Markov assumption and the assumption that the information set F;_1 coin-
cides with Y;_1, the conditional independence statement (2) implies:

Priyf,ui_1 l9i_1} =Pr{y; lyio1} Privi_i lioi}  VEe{l,...,T}



Similarly, Y,' | does not strongly cause Y? one step ahead, given Y2, if

Pr {yt2 | yt—l} =Pr {yt2 | yt2—1} Vi e {1’ R ’T} (5)

Definition 4 - Strong simultaneous independence for a Markov chain with sta-
tionary transition probabilities: Y;' and Y;? are strongly simultaneously indepen-
dent given Y;_1 if

Pri{y: | ye-1} = Pr{y; | ye—1} Pr{yi | 411} vtel (6)
or equivalently
Priy; | vi,9e-1} = Priy [y} vtel
or equivalently
Pr{y; | ye,9e-1} = Priy/ [ go—1} vtel

The appropriate statistical model where these conditions may be tested is
the joint distribution of ¥; given Y;_;. Granger non-causality conditions involve
only the marginal distributions of ;! and Y;? (conditional on Y;_1), whereas
testing for simultaneous independence requires the joint distribution to be fully
specified, and compared to the product of the marginal distributions. Notice
that, since Y;_1, as well as Y;, may belong to a finite set of four states, the most
general model representing Pr{y: | y:—1} involves 16 parameters, correspond-
ing to the transition probabilities from each of the states in (t — 1) to each of
the states in ¢t (or some one to one transformation of the transition probabili-
ties). More precisely, since the sum of the transition probabilities for transitions
starting from each of the states is equal to 1, just 12 parameters are enough to
describe the conditional distribution completely.

The paper is organized as follows. Under the maintained assumption that
{Y;} is a Markov chain with stationary transition probabilities, and that the
information set is restricted to V;_1, Section 2 shows how Pr{y; | y:—1} may
be represented with no loss of generality by a dynamic bivariate probit model.
Within this framework, the restrictions on the parameters implying (4), (5)
or (6) are illustrated. Section 3 extends the simple dynamic probit model il-
lustrated in Section 2 in two directions. First, the assumption of stationary
transition probabilities is dropped, allowing the transition probabilities to de-
pend on covariates. Then, the Markov assumption is also relaxed, allowing for
more complex dynamic structures. Section 4 shows under which conditions the
Maximum Likelihood estimates of the parameters of the proposed models, as
well as the Likelihood Ratio tests for hypotheses on such parameters, display

which in turn implies (4), being
Priy v 1 191}
Pr {y?—l | y:}—l}

The same argument holds for the other definitions.

Priy! |yi_1,v7 1} =



the usual asymptotic properties. Possible problems in finite samples are also
illustrated. Section 5 shows how the proposed analysis does specialize when one
is interested in a specific four states Markov chain, corresponding to discrete
time bivariate survival data. Sections 6 and 7 illustrate the proposed methodol-
ogy, using respectively data about marriage and fertility timing in a sample of
266 American women and about the adoption of two interrelated technologies
by 552 Italian metalworking plants. Section 8 concludes.

2 A Markov Dynamic Bivariate Probit Model
for Homogeneous Population

Essentially, the type of data set where we want to check for non-causality con-
sists in observations on the choices of N individuals facing two interacting bi-
nary choices in discrete time. To do this, it seems then natural to use, as a
statistical model, a dynamic version of a bivariate discrete choice model. The
static univariate and multivariate probit model, viewed in a latent regression
perspective, is briefly reviewed in Appendix A. In this Section a simple dynamic
version of the bivariate probit model is presented,’ derived under the following
assumptions:

e the population is homogeneous (no covariates are introduced);

o the process is Markov (all the information from the history of the process
which is relevant for the transition probabilities in ¢ is embodied in the
state of the process in (¢ — 1)).

Both these simplifying assumptions will be relaxed in Section 3. Notice
that the derivation of the dynamic model requires the events to take place
only in discrete time. In fact, qualitative variable models as logit and probit
are sensitive to the length of grouping: when analyzing events taking place
in continuous time subject to grouping, the estimates obtained using discrete
choice models can be subject to a severe bias. The phenomenon is much more
prominent when analyzing multi-state models, in which interactions between
events are under study.

In order to use the bivariate probit setting for representing the distribution
of it = (¥;4,Y?) conditional on the state of the system in (t — 1), let us
introduce the following notation:

!
Sit—1 — (1,1/11,,:_1,y?,t_1ay%,t_1y§,t—1)
Dy, , = 2diag (yi,t) — I»

It is worth to point out that s;_; is an invertible linear transformation of

S;_1 = [(1 - yg—l) (1 - yt2—1) ’y;—l (1 - yt2—1) ) (1 - yg—1) yt2—17y%—1yt2—1:|

5Dynamic versions of the univariate probit model are discussed, for example, in Heckman
(1981).




which involves four mutually exclusive dummies representing the four states of
the process in (¢t — 1); in fact s;—1 = Qs}_;, with

o

I
OO O -
OO
O = O
e

The reason for using s;_; instead of sf_; to describe the state of the system in
(t — 1) is that, doing so, the non-causality restrictions are more easily written
and interpreted.

As shown in Appendix A, the joint distribution of Y;; conditional on the
state of the system in (¢ — 1) can be written as follows:

1 .
Pr{yis | yit—1} = P2 (D’yi,t/glsi,t—l;oaD’yi,t [ pi 'i)l’t ] D;m) (7)
2,
where p; ; is given by

2exp (V'si,4-1)
L, — ] -1 8
Pt = 1 exp (7's4,¢-1) ®)

B8 = [b1,82] and « are parameter matrices of dimension 4 x 2 and 4 x 1 re-
spectively, while ®5 (; 4, R) denotes the integrated bivariate normal with mean
u and correlation matrix B. The logit-type functional form in (8) is chosen
80 as to bound the correlation coefficient between —1 and 1: other choices are
possible. As a whole, the distribution depends on 12 parameters freely varying
in R'2, and it is easily shown that the transition probabilities are a bijective
transformation of § and . Notice that the marginal distribution of Y}, and Y%,
(given Y; ;1) is given by

Pr {yzlt | yig—1} = B ((Qy%,t —1) Bisit-1;0,1) 9)

Pr{y;; | yit—1} = ®1 (297, — 1) B5si,4—150,1) (10)
It may be useful to give an interpretation of the model in terms of latent re-
gression model. Each individual ¢ has to make two binary choices at time ¢, i.e.
to choose the value of the binary bivariate vector Y;;:. The latent regression
approach assumes that the individual will choose Y;'; = 1 when a latent, contin-
uous random variable YZ};“ crosses a threshold, which, in the current framework,
is assumed to depend on the choice made in (¢ —1). The same holds for Y.
The latent regression here is:

1% __ 1
Yix = B18it—1 + €t
2% __ 2
Yit = B2sig—1 + €54

where:



Notice that the assumption that £; is independently distributed matches per-
fectly the Markov assumption, since failure of this condition means that there is
some information left in the history of the process after conditioning on Y; ;1.

The conditions for strong one step ahead non-causality and strong simulta-
neous independence are easily stated as restriction on the parameter space of

(7):

Hl(,,_g (Yl “+ Y2) : 61 = H1g01 (11)
Hio Y'»Y?): B2 = Hapo (12)
Higo Y' & Y?): v=0 (13)
where
1 0 1 0
01 0 0
Hl — 0 0 ] H2 - 0 1 (14)
0 0 0 0

Under Hy2, y7_; and y}_,y7 ; are excluded from (9), so that Pr {y, | yse—1} =
Pr{yl, |y}, 1} Similarly, under Hi .z, y;_, and yi ;y7 , are excluded from
(10), so that Pr {y%t | yis—1} = Pr {y%t | y%t_l}. Finally, under Hygo, pi: is
equal to zero, and hence the joint distribution (7) factors out in the product of
the marginal distributions (9) and (10).

3 Introducing Covariates and Relaxing the Markov
Hypothesis

In this Section, the model presented in Section 2 will be extended in two direc-
tions. First we will relax the assumption of stationary transition probabilities
by introducing covariates, in order to account for individual and/or time het-
erogeneity. This will be done under the Markov assumption. Then we will drop
the Markov assumption to allow for more complex dynamics. This will be done
in the absence of covariates. Relaxing both hypotheses is straightforward and
left to the reader.

Extending the information set. The information set available to predict Y;
is now enlarged to Fi_1 = Vi1 V X;_1.% Notice that replacing X;_1 by X;
is completely irrelevant for the following discussion. Let us first maintain the
Markov assumption, and for notational simplicity let us also assume, without
loss of generality, that all the information in X;_; which is relevant for the
transition probabilities in ¢ is given by X 1.

Extending model (7) so that the transition probabilities depend on z;—; may
be easily done by replacing s; ;1 by

1
z:,t—l = [s;,t—la"zz’t—l] (15)

6Let M and My be o-fields. M7V My denotes the o-field generated by M; UMy, Hence
{F:} = {t v At} corresponds to the canonical filtration associated to {(Y%, X¢)}.




where z7, is the part of z;+ which is linearly independent on s;; (typically,
if the constant is in both z;; and s;; it has to be dropped from z;; to avoid
perfect collinearity). If we denote by &k the dimension of z;, and by k* the
dimension of zj,, then B and v will be now of dimension (4 +&*) x 2 and
(4 + k*) x 1. It is important to point out that this way to include the covariates
amounts to assuming that the impact on the transition probabilities is the same
irrespective of s;4—1, so that the effect of the covariates is the same whatever
state the individual belongs to in (¢t — 1). A more general model, allowing for
interaction among the covariates and the state of the process in (¢ — 1), i.e.
8i,t—1, ensues from using in (7), instead of s;;_1,

Zit—1 = 8it—1 @ Tj 1. (16)

Notice that, in this case, B and v will be of dimension 4k x 2 and 4k x 1, so
that many more parameters have to be estimated. We will refer to the model
deriving from (16) as saturated model, while the model deriving from (15) will
be referred to as unsaturated. Notice that the unsaturated model is nested in
the saturated one, and therefore the decision about which one is convenient for
describing the data may be empirically based on testing. A simple example
may help understanding the difference between the two models. Assume that
each individual ¢ belongs, at any time ¢ to either one or the other two mutually
exclusive and exhaustive classes C; ad Cs. Define

1 _
Di,t - 1{individual i€C1 at time ¢}

2 _
D5y = 1{individualicC; at time t}

so that D}, + D?, = 1. Let X;; = (D},, D?,)". In this setting, one may take
z}, = d} ;, and therefore

* _ ! 1 !

Zit—1 = [si,t—ladi,t—l]
_ _ T4 ! 2 ! !
Zip—1 = Sit—1 @ Tjg—1 = [di,t—lsi,t—hdi,t—lsi,t—l]

The most striking difference between the saturated and unsaturated model in
this case is that, in the unsaturated model, X;; (i.e. belonging to class C; or
C5) has the same impact (positive or negative or none) on the probability of ¥;';
and Y} irrespective of the state in (¢ — 1). Conversely, in the saturated model,
X+ might have, say, a positive effect on the probability of Yl}t ifY;¢—1 = (0, 0)',
and no effect on the probability of Yl}t if ;-1 = (1,0)".

The conditions for Granger non-causality in the presence of covariates are
formally identical to (11) and (12), but the restriction matrices are defined as
follows for the unsaturated model:

* Hl 0 * H2 0
Hy = [0 _@*] = [0 _@*]

while, for the saturated model the matrices are

H=Le¢H , H=LoH



It is easily checked that these restrictions matrices exclude all the regressors
involving y7_; from Pr{y;, | ¥i¢t—1,%i,¢—1}, and all the regressors involving y}_,
from Pr{y?, | yi,t—1,%it—1}. As for the simultaneous independence condition
(13), it remains unchanged, since p; ; must be identically equal to zero for all
(i,t) in order to factor out the joint distribution (7) into the product of the
marginal (9) and (10), which requires that p;+ does not depend on covariates.

Relazxing the Markov assumption. Let us now relax the Markov assumption.
For the sake of simplicity, we go back to the assumption that the information set
available in ¢ is YV;_1. Consider first the case where the relevant information for
the transition probabilities is given by the last two states visited by an individ-
ual, rather than the last one only. There are therefore 16 possible paths followed
in (¢t — 2), (t — 1), at the end of which the individual may choose among 4 states.
Hence, the most general model one may use to describe Pr{y;+ | ys,t—1,¥s6—2}
requires 16 x (4 — 1) = 48 transition probabilities.”

This model may be written in the form (7) by replacing s;—1 by

2 _
8741 = Sit—1 @ Sjp—2

i.e. using the saturated model with z;:—1 = s;:—2. To generalize to the case in
which the last £ states visited are relevant for the transition probabilities, then

£ _
Sit—1 = Sit—-1®8it2®...0 8¢

has to be used in (7) instead of s;+—1. It seems natural to refer to this model as
bivariate Vector AutoRegressive Probit model of order £, or VAP(£). We will
call VAPX(£) the model where exogenous covariates are also included. Notice
that the number of parameters does increase very rapidly, since B and v will be
of dimension 4¢ x 2 and 4¢ x 1. The dynamic structure of the process may be
simplified by using the unsaturated model rather than the saturated one, which
would dramatically reduce the number of parameters to 3 (3¢ + 1), although the
interpretation of the ensuing model is unclear. A further simplification could
be based on the following underlying latent regression:
¢

Yig =1+ Z Ajyis—j + €

j=i

where y5, = (yi%,97%), Aj (j = 1,...£) are 2 X 2 parameter matrices, g is a
2 x 1 parameter vector, and:

1
N .. 0 1 p
Ez,t—(eit)NNnd([O],[p 1])

Notice that this model implies that
£

E{git | Yipts- o Yit—e} =p+ > Ajyie—j

j=i

"1t is easily shown that this non-Markov 4 states model may be rewritten as a Markov
16 states model, where 192 out of the 162 transition probabilities are set to zero, while 16
transition probabilities may be written as linear functions of the remaining 48.

10



or equivalently
¢

Vit =B+ Y Alis—j + N (17)
j=i
which is formally identical to the standard VAR model, with the only difference
that the distribution of the error term, which is usually assumed to be Gaussian,
takes here into account the binary nature of Y; ;.® The total number of parame-
ters is further reduced to 4£ + 3. It is important to explore the precise meaning
of these restrictions on the dynamics of the process, and find other, more inter-
pretable ways to set up a priori restrictions of the parameter space of the VAP
models. Notice however that the problems related to using overparameterized
models are here mitigated, with respect to the standard Vector AutoRegressive
literature, by the availability of individual data, since the usable data points are
here N x T, rather than T' (see also Section 4).
For the unrestricted VAP(f) model, the Granger non-causality conditions
are formally identical to (11) and (12), but the restriction matrices are defined
as follows:

H;“:g{1®Hl®...®HL , H;:g{2®H2®...®H%
ltiTnes ltiTnes

In this case, the restrictions matrices exclude all the regressors involving y? 1, ...,
y;_, from Pr {yil’t | Yi,t—1+- -, Yit—¢}, and all the regressors involving y;_,,...,
yi_g from Pr{y?, | yist—1,...,¥i¢—¢}. Again, the simultaneous independence
condition (13) remains unchanged. The restriction matrices for the restricted
versions of the VAP, as well as those needed for the VAPX may be obtained
accordingly.

4 Estimation and Testing

The purpose of this Section is to discuss the properties of the parameters es-
timates in model (7), as well as the properties of the tests for the hypotheses
(11)-(13). Some hints will also be given about the generalizations illustrated in
Section 3. We will discuss the asymptotic properties of Maximum Likelihood es-
timates and LR tests, although several other standard procedures for estimating
and testing may be used. Some finite sample results will be also illustrated.
We assume that each individual ¢, ¢ = 1,... N, is observed at each time ¢
during a period of known length £ = 1,...,T; the extension to the case in which
every individual 7 is observed for a length T; is straightforward if we suppose

8Notice also that, in this model, dropping the constant would impose the following restric-
tion, probably uninteresting in most applications:

Pr{Y,=1|Yit1=...=Y;;,4=(0,0} =05
Pr{Y% =1|Yit_1=...=Y;;,4=(0,0} =05

11



that 75 is a Markov time with respect to the filtration Fp,_1. The likelihood of
the sample can be written in compact form as:

N T

L6;y) = [T T Pr{vitlyie} =

i=1t=1

N T 1 o
P - .7t
~IITT® (PusBsicsoun, [ 2] 1),

i=1t=1

where p; 1 is given by (8), and is therefore a function of s; ;1 and the parameters
5.

Under some conditions, developed in the following, maximization of the log-
likelihood leads to consistent, asymptotically normal and asymptotically effi-
cient estimates of the parameters of the model, which ensures that LR tests are
asymptotically x? distributed under the null hypothesis.? Let us discuss the
asymptotics involved, by considering three cases:

e T — 0o, N finite
o T finite, N — 00
o T o0, T =

To keep the notation simple, notice that the Markov model for homogeneous
population can be written in a compact notation, since it is equivalent to a
Markov model for the process {S;} which, at any time ¢, takes on values in
a finite state-space S = {0,1,2,3},!° with a stationary (or time-homogeneous)
transition probability matrix P = || Pyx||, (b, k) € Sx S; clearly P is a stochastic

matrix, that is, Ppr > 0 Vh, k, and > P = 1. Moreover we define
k€S

Pr=p...P=|Pr|

n times

where P} = Pr{Si;, = k|S; = h}.

Essentially, what we need to have the usual asymptotic properties for the
ML estimates and LR tests is that all the transitions whose probabilities have
to be estimated (i.e. are not known) can be observed infinitely many times
as T and/or N go to infinity. It is intuitive that this ensures consistent and
asymptotically normal estimates of the transition probabilities. This requires
the following:

9McFadden (1984) proves consistency and asymptotic normality for a general multinomial
model under more general conditions, but the extension in this case seems to be difficult,
because he postulates that the explanatory variables are independent identically distributed for
each observation. This does not seem to hold generally for multiperiod models; nevertheless,
McFadden’s result can be applied to our homogeneous model.

10The elements of S correspond element-wise with the elements of V), so defined:

y = {(070) 3 (07 1) 3 (170) 3 (17 1)} .

representing the state space of the process {Y:} at any time &.

12



1. (necessary condition) Each state with at least one unknown exiting transi-
tion probability must be visited infinitely often with probability 1 as either
T or N or both go to infinity.

2. (sufficient condition) Infinitely many of the individuals who have reached
each state with at least one unknown exiting transition probability must
be observed for at least one time period in that state.

In the following we will enunciate some results about the conditions on P
under which both the necessary and sufficient conditions are fulfilled. Let us
first state the condition when T' — oo with N fixed.

Proposition 5 Assume that P is such that each state with at least one unknown
exiting transition probability is persistent. Then T — oo ensures the fulfillment
of condition 1 for any N > 1.1Y Condition 2 is obviously fulfilled for T — .

The proof of the first part is in Billingsley (1986), Theorem 8.2. Notice that
each state of an irreducible Markov chain with finite state space is persistent
(Billingsley, 1986, Example 8.7). Therefore in our case assuming that the chain
is irreducible ensures that it is persistent, which in turn ensures that ML esti-
mates show the usual asymptotic properties when T' — oo for any N > 1, finite
or infinite.

A similar result can be obtained when N — oo, but it depends on the initial
conditions of the process. These are defined by a vector of initial probabilities
p = ||p||, representing, Vh € S, the probability of being in state h in "= 0. Of

course, pp, > 0Vh € S, and > pp =1.
heS

Proposition 6 Assume that P and p are such that pp, P,?:k > 0 for each state
k € S with at least one unknown exiting transition probability, for at least one
hy € S and for some finite integer ny. Then, N — oo ensures the fulfill-
ment of condition 1 for any T > max {mng, k € S}, where Ty, is, for each k,
the minimum ny such that phkP,?:k > 0. Moreover, condition 2 is fulfilled if
T > max{ng, k€ S} +1=T".

The condition on p and P ensures that there is at least one initial state and
one route which allows each state with at least one unknown exiting transition
probability to be reached in a finite number of steps. Then, if T is large enough,
and N — o0, each state with at least one unknown exiting transition probability
will be reached infinitely many times. One additional time period is needed to
estimate the transition probabilities. Notice that if p, # 0 Vh € S, and the
chain is irreducible, then the conditions on p and P are met, and moreover
T* = 2, so that the ML estimates show the usual asymptotic properties when
N — oo for T' > 2, finite or infinite.

" For definitions of irreducibility and persistence, see Billingsley (1986), Section 8.
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As a whole, the conditions

Phn 7é 0, VheS
P irreducible

are sufficient, although non necessary, for consistency and asymptotic normality
of the Maximum Likelihood estimator with either ' — oo or N — oo, where in
the latter case the T must be at least equal to 2. Of course, since these conditions
are only sufficient, the less stringent assumptions stated in Propositions 5 and
6 lead to the same result.

Extension to non-Markov chains such as the VAP(£) model are straight-
forward, since it is always possible to rewrite a bivariate VAP(£) model as a
finite state-space Markov chain with 4¢ states, and hence the conditions stated
in Propositions 5 and 6 apply to the transition probabilities matrix and initial
probabilities vector corresponding to the new Markov chain.

When covariates are introduced, it is an obvious requirement that they are
weakly exogenous with respect to the transition probabilities (see Engle, Hendry
and Richard (1983)) in order to achieve asymptotic efficiency of the ML esti-
mates. Under this additional assumption, the same conditions stated in Propo-
sitions 5 and 6 ensure consistency and asymptotic normality.

Let us briefly address some problems possibly arising in finite samples. It
may be easily shown that, in the homogeneous population model, the transition
probabilities are estimated essentially as the ratio of the number of cases where
the transition occurred (say, Npi) over the number of cases where it could have
occurred (say, Np,). In any finite sample, the distribution of Ny, given Ny, will be
Binomial, and will hence converge in distribution to the Normal with N;, — oo.
On the other hand, the distribution of Nj depends on N , T, the transition
probabilities matrix P and the initial probabilities vector p; in the light of this,
propositions 5 and 6 state the conditions on P which ensures divergence of such
distribution with either N (Proposition 5) or T' (Proposition 6). This divergence
leads to normality of the distribution of the ratio Jyv—": Notice however that,
in finite samples, this distribution will not be normal. In particular, for states
which have been visited few times (N, small), the distribution of Ny given Ny,
may be very far from normality, especially when the true transition probability
Py, is close to zero or one, which will give highly skewed distributions. Clearly,
the distribution of Wald type tests for hypotheses involving parameters whose
estimates are affected by this problem will be very far from the asymptotic x>
distribution, while the asymptotic approximation might work quite well when
the parameters involved in the restriction are estimated based on large Np’s.
Mimicking similar results in other models, LR type tests might perform better
in the first case, and worst in the second, but a careful analysis of finite sample
properties is needed to make precise statements. In any case, in order to get
an idea of how reliable the asymptotic distribution can be, it is convenient to
check the number of data points in each state with at least one unknown exiting
transition probability. In fact, even if N x T is large, the information about
some of the transitions might be quite scarce.
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5 Non-Causality with Survival Data

Special cases of the model discussed in Sections 2 and 3 can be obtained when
some of the transition probabilities are set at 0. In the following paragraph we
will deal with the case of survival models,'? i.e. models in which the states
with Y = 0 are not accessible from the states with Y! ; = 1, j = {1,2}; this

implies that every decision with respect to a variable Y7 is in a certain sense
irreversible. This imposes on the model the following constraints:

Pr{Y;, =0]Y;; =1} =0,
Pr{Y;=0|Y =1} =0,

or, in a different form:

Pr{Y;; = (0,0)' | Yis1 = (1,0} =0,
Pr{Y;; = (0,0)' | Vi1 = (0,1)'} =0,
Pr{Y;; = (0,0)' | Vi1 = (1,1)'} =0,
Pr{Yi; = (1,0)" | Yis—1 = (0,1)'} =0,
Pr{Y;:=(1,0)"| Yis—1 = (1,1)'} =0,
Pr{Y;; = (0,1)" | Yis—1 = (1,0)'} =0,
Pr{¥i:=(0,1)"| Yiem1 = (1,1)'} =0

Then the state-transition diagram of this kind of model can be represented as
in Figure 2.

Probably the simpler way to think about this model is to consider a bivariate
probit model starting from state 0, that is from ¥; = (0,0)" with transition
probabilities:

1
Pr {yi,t | Yvi,t—l = (070)1} - (1)2 (Dyi,t |: glg :| ;OaDyi,t |: p g_) :| D.;Ji,t) ?

where we have eliminated the subscript from p since no other correlation coef-
ficient is present in the model.
Transitions from states 1 and 2 have respectively probabilities:

Pr{y;;|Yit—1 = (0, 1)} =% ((2yi¢ — 1) (Bro + B12);0,1),
Pr {yft | Yig—1 = (1,0)'} = & ((Qyz?,t —1) (Bao + B21);0,1).

12 A standard reference for survival models is Kalbfleisch and Prentice (1980). A counting
processes perspective on these models is in Andersen et al. (1993). A review of multivariate
survival models is Hougaard (1987). The model presented in this Section is discussed in greater
detail in Mosconi, Sartori and Seri (1998), where in particular the effect of time aggregation
on causality tests is discussed.
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y'=0 yt=1
y?=0 y?=1

Figure 2: State-Transition Diagram for a Bivariate Survival Model

Conditions for simultaneous independence and Granger non-causality can be
easily adapted from those introduced in Section 2, and take the particularly
simple form:

ng_g (Yl = Y2) : 612 =0
Hl_ﬁg (Yl ad Y2) : 621 =0
Hl@g (Yl L= =4 Y2) : p= 0

Also the introduction of exogenous variables can be accounted for by simply
paralleling the solutions presented in Section 3. The same holds true as regards
the introduction of the lagged dependent variables y;;—;; saturated and unsat-
urated models are defined as in Section 3, but a comment is in order: in this
case conditioning on the lagged endogenous variables is meaningful only when
the individual is in state 1 or 2, since when he is in state 0, conditioning on this
information induces no change in the transition probabilities, as state 0 cannot
be accessed from any other state of the model.

As for the asymptotic properties of the estimates and tests, notice that for
this model, even in the case of homogeneous populations, Proposition 5 does not
hold, since this model can be represented as a Markov chain with an absorbing
state corresponding to state 3. This means that N — oo is needed in order
to ensure consistency and asymptotic normality of the estimates. Conversely,
T — oo does not lead to the usual asymptotic properties. The intuition is that,
for any finite N, when T — oo all individuals will eventually end up in the
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absorbing state 3. When this happens, no additional information is obtained
by increasing T' further. Notice however that, up to this point, the estimates
become more efficient and, loosely speaking, closer to normality, as T increases.

6 An Illustrative Example for Panel Data

Notwithstanding the interest in timing fertility and in working choices, the joint
study of marital duration and fertility has not been a deeply studied topic in
Sociometrics: Waite and Lillard (1991), Lillard and Waite (1993) and Lillard
(1993) are almost the only contributions to its study.

However, the picture they draw is quite clear. Married couples with children
appear to be less likely to end their marriages than childless couples. This
seems to suggest that children affect the chances that they parents divorce;
however, the process may not be so simple, since the chances that the marriage
will last may affect couples’ willingness to have children. The economic model
used by the authors is quite sophisticated and able to capture a wide variety of
situations: the problem with Lillard’s and Waite’s approach is that the method
of estimation they use is not able to yield consistent estimators and therefore
the inferences they draw from the model are fallacious.!®

Our analysis will be based on data from the PSID database and therefore a
brief description appears to be necessary. The Panel Study of Income Dynam-
ics (PSID), begun in 1968, is a longitudinal study of a representative sample of
U.S. individuals (men, women, and children) and the family units in which they
reside. It emphasizes the dynamic aspects of economic and demographic behav-
ior, but its content is broad, including sociological and psychological measures.
Starting with a national sample of 5,000 U.S. households in 1968, the PSID
has reinterviewed individuals from those households every year since that time,
whether or not they are living in the same dwelling or with the same people.
Adults have been followed as they have grown older, and children have been
observed as they have advanced through childhood and into adulthood, forming
family units of their own. The study is conducted at the Survey Research Cen-
ter, Institute for Social Research, University of Michigan. Information about
the original 1968 sample individuals and their current co-residents (spouses,
co-habitors, children, and anyone else living with them) is collected each year.
This has allowed us to select 266 women appearing in the database from 1968 to
1993: subjects with missing covariates have been eliminated and the variables
has been elaborated in order to yield a certain uniformity over time.

More information about the variables can be found in Section B: each column
represents a variable and for each year and variable the code is reported; the

13The Lillard and Waite approach suffers from a problem of endogeneity since they use
a model with unobserved heterogeneity that is valid only under the hypothesis of strong
exogeneity of the regressors. However, since they use as explicative variables some lagged
dependent variables, this condition seems to be violated.

The methods of Arellano and Carrasco (1996) and Honoré and Kiriazidou (1997) could be
of interest here.
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selected range is reported in parentheses. Therefore the following variables have
been selected:

e Y1: the variable is set to 1 in ¢ if the individual has had (at least) a child
during the year ¢, 0 otherwise;

e Y2: this variable is set to 1 in ¢t if the individual was married during the
year t, 0 otherwise;

e AGE: this is equivalent to the PSID variable AGE OF THE INDIVIDUAL;

e INCOME: it is equivalent to MONEY INCOME (in the period 1968-1974) or
TAXABLE INCOME plus TRANSFER INCOME (in the period 1975-1990) or the
sum of TRANSFER INCOME, LABOR INCOME and ASSET INCOME (in the pe-
riod 1991-1993); this is due to the increased precision of the variables in
the PSID database;

e HOURS: it is the PSID HOURS WORKED variable;

e EDU: it is essentially the PSID YEARS OF SCHOOL COMPLETED variable:
however it has been checked for incongruences with HIGHEST GRADE COMPLETED
and COMPLETED EDUCATION.

To provide an application of causality testing for binary bivariate processes,
six models belonging to the class presented in Section 3 have been estimated on
PSID data.'* We are interested in performing a series of tests on these models:
in particular, we would like to choose a model that fits parsimoniously the data
and to test for non-causality between the two processes. In order to select the
model that seems to fit the data better we have to consider separately the case
in which one of the two models is nested in the other one, and the non-nested
case. In the nested case, Likelihood Ratio tests can be used; on the other side, to
test among non-nested models, we consider two well-known information criteria,
the Akaike Information Criterion and Schwarz’ Bayesian Information Criterion.
Then we study through Wald tests the non-causality relations between the two
processes {Y;'} and {Y?2}.

In the following we will use the mnemonics for the estimated models reported
in Table 1. The full estimates of the proposed models are reported in Appendix
C; for our purposes, it is enough to consider the log-likelihoods of the estimated

M4 Estimation has been performed using GAUSS-386i. The covariance matrix of the esti-
mates have been calculated through the cross-product of first derivatives.
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[ Mnemonics | Contents |

U{ND One Lag Unsaturated Model with No Simultaneous Dependence
UéND Two Lag Unsaturated Model with No Simultaneous Dependence
S{NU One Lag Saturated Model with No Simultaneous Dependence
U1 One Lag Unsaturated Model

Ug Two Lag Unsaturated Model

51 One Lag Saturated Model

Table 1: Mnemonics for the estimated models

models, together with the degrees of freedom as reported in the following scheme:

IND L = —2985.8111 o lu L = —2962.6891
2 DoF = 6781 2 DoF = 6777
l N l
UIND L = —2998.7815 o lu L = —2980.7935
1 DoF = 6787 ! DoF = 6783
T N T
SIND L = —2914.4933 o s L = —2894.4002
1 DoF = 6757 ! DoF = 6753

The possible restrictions are indicated by an arrow connecting the two boxes:
in particular, if a box connects model MY (U for unrestricted) to model M? (R
for restricted), we say that model M® is nested in model MY. Therefore, we
can test all the restrictions through a Likelihood Ratio test;'® in particular, if
we indicate by Ly the log-likelihood of the unrestricted model and by Lg the
log-likelihood of the model obtained after constraining some of the parameters,
the Likelihood Ratio test consists in calculating the statistic

2. (Lr - Lyy).

This statistic is asymptotically distributed as a X?; where p is the number of pa-
rameters constrained in the restricted model. The results are reported in Table
3 and show that all the restrictions are refused at any conventional significance
level (90%, 95%, 99%). Clearly this procedure is not able to discriminate be-
tween two models that are not directly linked by a restriction, and therefore, we
cannot say whether U, fits the data better than Sy, since they are non-nested.
Therefore, in order to select a model, we calculate two widely used criteria for
the comparison of non-nested models: the AIC (Akaike Information Criterion)
and the BIC (Bayesian Information Criterion, due to Schwarz, 1978); in both
cases the model maximizing the criterion is selected. The formulas are the

153ee Gouriéroux, Monfort and Renault (1987) for a similar testing strategy.
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[Models| L [p] AIC | BIC |
UIND T 29987815 | 18 | -2980.7815 | -3078.21022
UIND 1 29858111 | 24 | -2961.8111 | -3091.71605
SIND 1 2914.4933 | 48 | -2866.4933 | -3126.30321

U; -2980.7935 | 22 | -2058.7935 | -3077.87304
Us -2962.6891 | 31 | -2031.6891 | -3099.48300
S -2894.4002 | 52 | -2842.4002 | -3123.86094

Table 2: Information criteria for the estimated models

[ Restrictions [ x* Test | DoF | Signif. ||

U, -»U{"P 35.9760 4 | 2.92678E-07
UIND UIND T 959408 6 | 2.28367E-04
SIND LUIND | 1685764 | 30 | 3.10543E-21
S; —UIND 1 5087626 | 34 | 5.20616E-27

U, —»UIND 72.1848 10 | 1.67555E-11

U, —UIND 46.2440 4 2.19107E-09

S, —»SINVD 40.1862 4 3.96112E-08

S =Y 172.7866 30 5.31910E-22

Uy Uy 36.2088 6 2.51064E-06

Table 3: Restrictions on the estimated models

following ones:

where M is a shortcut for the number of observation, be it N, T' or mixed (in
our case, M = N -T = 6,805). It is important to remark that Akaike’s criterion
is not in general consistent, that is the probability of choosing the correct model
does not go to 1 as long as the number of observations go to infinity: moreover,
AIC has the unpleasant tendency to select overparameterized models; on the
other side, the BIC is consistent. From Table 2, we see that AIC selects model
S1, while BIC selects U;.Even more interesting and more directly linked to the
topic of this Section would be to test for the presence of causality relations
between marriage decisions and fertility timing. To do so, we have performed a
Wald test as described in the previous Sections, whose results are displayed in

AIC = Ly — p,
BIC:LM—g-lnM,

Table 4. The results of all of these tests are univocal:

o the hypothesis Hi..2, concerning the non-causality of Y2 towards Y! is
strongly rejected at any conventional significance level: therefore, we can-
not accept the hypothesis that Y2 does not cause Y'. Therefore, a marital
relation seems to increase significantly the probability of having a child,

as common sense suggests.
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. 1 2 . 1 2 . 1 2
Models Hivo: Y'«+Y Hio: Y'»Y Hl@g : Y &Y
T-Stat (DoF) Signif. T-Stat (DoF) | Signif. T-Stat (DoF) Signif.
UIND
1 71.204432 (2) | 3.4526626e-16 | 2.4087217 (2) 0.20988360
UIND
2 83.657807 (4) 2.9219652e-17 3.1373153 (4) 0.53511467
SIND
1 111.08184 (12) 3.6553090e-18 5.8918288 (12) 0.92143632
Ul 76.619847 (2) 2.3025637e-17 2.1034362 (2) 0.34933704 27.508227 (4) 1.5688357e-05
U2 88.789666 (4) 2.3799911e-18 2.5789416 (4) 0.63055802 30.390133 (7) 8.0519688e-05
S 111.93028 (12) | 2.4825481e-18 | 5.9715420 (12) 0.91750980 30.140922 (4) | 4.5815270e-06

Table 4: Causality testing

o the hypothesis Hi_.2, concerning the non-causality of Y! towards Y2 is
accepted at any conventional significance level: therefore, we can accept
the hypothesis that Y! does not cause Y2. Hence, fertility timing does
not seem to have any impact on the marriage and divorce decisions of
American women.

o the hypothesis Hi¢ o, concerning the simultaneous independence between
Y? and Y! is rejected at any conventional significance level: the same
result had been obtained when testing for restrictions in the estimated
models. Indeed, testing hypothesis Hy¢o is equivalent to testing for the
restriction of a model with simultaneous dependence to a model without
simultaneous dependence: clearly, the numerical results are hardly com-
parable, but we expect the two testing procedures to be asymptotically
equivalent.

7 An Illustrative Example for Survival Data

To show a potential application of the model developed in Section 5, we investi-
gate the causal relationship between the adoption of two technologies introduced
in the 70’s in the Italian metalworking industry. The dataset involves survival
data, namely the spell of non adoption for both technologies in a sample of Ital-
ian plants, and therefore the analysis described in Section 5 will be performed.
The two technologies considered are Computer Aided Design or Manufacturing
(CADCAM), which will be labelled by 1, and Flexible Manufacturing Systems
(FMS) which will be labelled by 2. Both technologies are originated from the
Flexible Automation (FA) paradigm and therefore they are expected to display
significative interactions.

Data on the diffusion of FA within the Italian metalworking industry are pro-
vided by the FLAUTO database, developed at Politecnico di Milano. FLAUTO
monitors adoption of FA technologies by a sample composed of 782 Italian met-
alworking plants with 10 or more employees. The sample is stratified by size
class, industry, and geographical area, so as to faithfully represent the uni-
verse of Italian metalworking plants with 10 or more employees. The dataset
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originates from a retrospective survey carried on in June 1989. While all the
plants included in FLAUTOQO are involved in production activities (i.e., man-
ufacturing and/or assembly), the same does not apply to design/engineering
function. According to the information available in the database, 230 plants
had no full time employee in the design/engineering function. Such plants were
quite unlikely to belong to the population of realistic prospective adopters of
CADCAM,; therefore, they were excluded from the joint analysis of the diffusion
of both technologies, reducing the sample size to 552. CADCAM and FMS have
been introduced in Italy around 1970, hence the observation window is assumed
to begin in this year and calendar time ¢ is set to 0 in 1969. Notice that, since
the survey is made in 1989, ¢ never exceeds T = 20.

For each plant i = 1,...,552, we observe the year of adoption of both tech-
nologies, say t! and 7. To fit these survival type data into our framework, it is
convenient to transform them as follows:

1 __4F H 1
Yi+ = L{plantiadopts CADCAM at timet} t=tl, ... ,min[t},T]

1 _ _ 4E . )
Yi,t = L{plantiadopts FMS at time ¢} t=t7,...,min [t],T]

The different time span of the individual data is explained as follows. First,
about 30% of the plants in the sample entered the metalworking industry after
1970: therefore, firm ¢ contributes to the likelihood function only from the year
of entrance in the sector, denoted as tf . Moreover, in terms of the Markov
chain depicted in Figure 2, when the plant adopts both technologies it en-
ters an absorbing state, and therefore does not give any additional contribu-
tion to the likelihood (the probability of exiting the state is zero). Notice also
that, as illustrated in Section 5, when ¥; ;1 = (1,0)" the bivariate distribution
Pr {yi,t Y1 = (1,0)'} collapses into its marginal Pr {yf’t Y1 = (1,0)'},
since Pr{y}, =1|Y;4-1 = (1,0)'} = 1. Therefore, as obvious, no additional
information is involved in recording y; , for ¢ > ¢;. The same argument holds
for Y. Finally, the data are right-censored because the firms are not observed
after 1989, so that ¢ never exceeds T' = 20. Notice that this kind of censoring
involves no bias, since time of censoring is a Markov time w.r.t. the filtration
generated by the process.

In this framework, the use of a discrete time model can be justified supposing
that the adoption of these technologies is decided during the budgeting phase,
i.e. it is a discrete time event. This assumption seems to be correct in this case
since these technologies are very expensive and requires often a reorganization
of the structure of the firm (revision of the information system, skills of the
employees, etc.): this renders plausible that the decision is taken in a formal
moment as the discussion of budget.

Let us now introduce the covariates, i.e. the vector z;; in our notation.
The economic theory related to the diffusion of technological innovation recog-
nizes four different groups of factors affecting the delay in the adoption of an
innovation (see for example Colombo and Mosconi, 1995). Rank effects explain
the delay in adoption as a consequence of firm heterogeneity: characteristics
of the firm affect adoption probability, independently of the behavior of other
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firms. Epidemic effects relate the dynamic pattern of diffusion with the spread
of information about the features of the technology and, therefore, with the
cumulative number of previous adopters. Stock and order effects originate from
game-theoretic models: early adopters have a first-mover advantage over the
others because of the possibility of preemption on resources critical for the use
of the technology.

The model presented in the following is simplified and involves a reduced
number of regressors: it should be considered only as an example of the meth-
ods introduced in the previous sections. The only time-invariant covariate con-
sidered is the size of the plant expressed in thousands of employees at June
1989: previous studies show the evidence of a positive and highly significant
effect of size on the probability of adoption. This could be due to the fact that
the profitability of a technological innovation requires a critical mass to become
effective; moreover, great plants enjoy advantages connected with the reduc-
tion of the risk, because of preferential accesses to the capital markets and to
managerial and organizational resources.

In addition we consider different time scales. We conform to Colombo and
Mosconi (1995) in using both the calendar time ¢, and the duration of non
adoption 74 = £ — max (0, tf ) For plants that entered the sector before 1970,
the two time scales coincide. We expect calendar time to reflect phenomena
which do not depend on the existence of the firm, notably changes in the prices
and performance improvements of the technologies over time, epidemic effects,
and other time varying factors. Instead, the duration of non adoption captures
effects related to the existence of the firm: insofar as is negatively related to the
age of plant i, we may expect a negative duration dependence as younger firms
and plants exhibit on average higher growth opportunities than older ones and
thus more frequently face investment decisions.

Ags a whole, the covariates introduced in the model are the following;:

Z;p = (stze; t,Tit) s

in our application, for expositional purposes, p is assumed not to depend of z; ;.

We have estimated two different classes of models:'® the first group is formed
by the saturated ones; the second is composed of the unsaturated ones. In each
class, the baseline model, which will be referred to as Hy, is estimated under
no restriction on the parameters. Within this model it is possible to test for
non-causality through Wald or likelihood ratio tests.

Table 5 reports the estimates of the unrestricted unsaturated model, which
allows for a more parsimonious representation of the economic aspects.'” These
estimates might suffer some bias due to the omission of several variables that
have proved significant in previous studies: however, all of our hypotheses have
been confirmed. The size of the firm is highly significant for both CADCAM

16Estimation has been performed as in the previous Section.

7The saturated models give no significant improvement of fit in this case, as can be seen
comparing through a Likelihood Ratio test the value of the loglikelihoods reported in Table
6.
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coefl. std.dev. | t-test p-value

B1o | Constant —3.798 0.129 | —29.51 0.00

Bia | i 0.469 0.125 3.76 0.00

Pr{y;; | yit—1,2it} | Bis | size; 0.285 0.043 6.64 0.00
(CADCAM) Bre | t 0.139 | 0.011| 1248 0.00

Bir | Tt —0.003 0.009 | -0.30 0.38

B2o | Constant —3.562 0.192 | —18.56 0.00

Bo1 | yiq 0.198 0.109 1.81 0.03

Pr{y?, | yis—1,2iz} | Bas | size; 0.252 0.057 4.41 0.00
(FMS) Bog | t 0.082 0.018 4.61 0.00

Bor | it —0.006 0.014 | -0.41 0.34

p Correlation 0.246 0.081 3.05 0.00

Observations 9853

Loglikelihood —1475.488

Table 5: Estimates of the Unsaturated Model

and FMS: it has a positive sign, confirming the presence of an effect of size
on the returns from adoption. Calendar time is also highly significant, because
of its positive correlation with the performance of both CADCAM and FMS,
and its negative correlation with prices. Duration of non adoption results in-
significant, but this is probably due to a problem of misspecification, since a
more complete study on the same dataset evidences a negative and moderately
significant impact of this variable on the probability of adoption of FMS, while
no effect is detected on CADCAM.

Based on Table 5, Wald type non-causality tests may be done by simply
analyzing the ¢ — test for the parameters 812, 821 and p. B2 is positive and
significant (the hypothesis of Granger non-causality is rejected), which suggest a
positive effect of adoption of FMS on the following adoption of CADCAM: this
has a simple economic interpretation and confirms the presence of an interaction
of the two technologies. On the other hand, 851 is positive but non significant,
which means that the Wald test accepts the hypothesis that CADCAM does
not Granger cause FMS (Y1 —+ YQ). The correlation between the error terms
of the latent regressions relative to CADCAM and FMS (p) is positive and highly
significant: this implies a positive interaction in the simultaneous adoption of
the two technologies. It is worth noticing that the results of non-causality tests
depend on the information set, and therefore one might think that the evidence
presented here depends on the very limited information supplied to the model.
Actually, the results of the non-causality analysis are substantially unchanged
even when the variables conditioned upon are all those included in Colombo
and Mosconi (1995).

Let us now illustrate a more complete non-causality analysis, including some
interesting joint hypotheses. Testing is based on likelihood ratio tests; Wald
tests have been also computed, getting essentially identical results. For both the
saturated and the unsaturated models, four restrictions on Hy are considered:
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Saturated Unsaturated
Model | Loglikelihood | Par. | Loglikelihood | Par.
Hy —1472.925 17 —1475.488 11
Hy o —1481.004 13 —1482.533 10
Hioo —1476.176 13 —1477.141 10
Hio —1484.106 9 —1484.106 9
Hyo —1488.510 8 —1488.510 8

Table 6: Likelihood of the Estimated Models

Hypothesis | LR test | dgf | p-value
Hi ovs.Hy | 14.090 1 0.00
Hi.ovs. Hy 3.307 1 0.07
Hiovs.Hy | 17.236 2 0.00
Hiisvs.Hy | 26.043 3 0.00

Table 7: LR Non-Causality Tests for the Unsaturated Model

Hip:Y! » Y2,

Hious:Y%2» Yl,

Hio: Y1 Y2 V2 5 Y1
Hii:Y'»Y2Y?2 Y LY Y2

The maximized loglikelihood, together with the corresponding number of pa-
rameters, is reported in Table 6 for each of the estimated models.

It is straightforward to note that likelihood ratio tests fail to detect, at usual
significance level, any difference between a saturated model and the correspond-
ing unsaturated one. It is therefore not surprising that also the non-causality
tests yield about the same results. Table 7 reports the tests for the unsatu-
rated model. The results support the economic consideration that the previous
adoption of an FMS rises the probability of adoption of a CADCAM, while in
the opposite direction the evidence is much weaker, and statistically non sig-
nificant. In fact, the economic intuition suggests that CADCAM is a powerful
design tool even without an FMS. The strong simultaneous dependence suggest
that the decision of joint simultaneous adoption occurs more often than what
would be expected if the two decisions were taken independently.

8 Conclusions
In this paper we make a step towards rendering an important tool of applied

macroeconometric analysis, such as Granger non-causality, available and oper-
ational for those situations in which the processes involved in the analysis are
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binary, as often happens in microeconometric analysis. The paper is grounded
on a rigorous mathematical definition of non-causality, which is shown to be
easily fitted into a dynamic version of the bivariate probit model. Particular
attention is placed in including covariates into the analysis, and in specializing
the definitions for longitudinal data sets. Panel type data for heterogeneous
individuals are in fact typical in microeconometric applications.

The paper implicitly suggests so many extensions to fill up a research agenda.
To make some examples: a more parsimonious representation of the dynamics;
allowing for unobserved heterogeneity; generalizing to a multivariate setting;
mixing binary and continuous variables; analyzing the impact of time aggrega-
tion.
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A Multivariate Discrete Choice Models

The binary case. Choice among discrete alternatives is a deeply studied topic
in modern econometrics. Consider an individual facing a binary choice. This
situation may be modelled by assuming the existence of a latent continuous
variable, supposed to be an index of the propensity to undertake this decision.
A threshold model is a. model in which the choice of the individual is supposed
to be caused by this index crossing a deterministic value.'® In the following we
will consider a threshold of 0, since no restriction is imposed in this setting.
If we indicate with Y;* the latent continuous variable, we have:

v — 1, fY*>0
t7 1 0, otherwise
or
Yi= 1{Y;‘>0}

where 1 is the indicator function. If Y;* has a cumulative distribution function
Fy+ (), we can express the probability of Y; taking a value 1 as:

Pr(Y; = 1) = E(Y;) =E(1fy.5}) = Pr (¥} >0) =1 - Fy- (0)
Similarly the probability of having a value of 0 is:
Pr(Y;=0)=1-Pr(¥; =1)=Pr(¥;* <0) = Fy- (0)

A particular case of this general framework is the latent regression model, that
can be obtained when Y;* is a (usually linear) function of observed and unob-
served characteristics of the individual and of the environment:

E(Y;" | z;) = B'z:
Yi* = ﬂl.’lli + &;

Here z; is a vector of observed covariates, while &; represents the unobserved
ones. Assuming that ¢; has a c.d.f. F, (), the probability of the discrete binary
variable Y; is:

Pr(¥; = 0] 2;) = Pr (Y < 0) = Pr(8'z; +¢; < 0)

=Pr(e; < —f'z;) = F. (—F'z;)

Pr(V;=1|z;)=1-Pr(Y;=0)=1-F. (-8'%)

If the density function f. (-) is symmetric around 0, then F (—y) = 1 — F (y)

and:
Pr(Y; =1|z)=1-F,(-f'z;) = F. (8'z:)

18gtochastic threshold are commonly advocated in biometrical response study: here an
individual is treated with a deterministic quantity of a reagent; the reaction (death or survival)
is caused by the crossing of a stochastic threshold, function of observed (age, etc.) and
unobserved (frailty or proneness, etc.) characteristics of the individual. In economics, it
seems more natural to suppose the threshold deterministic.
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The assumption of symmetry is particularly well suited when there is no natural
order in the responses, i.e. when 1 and 0 are logically interchangeable.!® In
particular, when g; is a normal r.v.

g ~ N (0,0%)
we recover the standard probit model:
Pr(Y; =0|z;) =@ (-8';0,0%)
Pr(Y; =1]|z;) = & (8'2;;0,0%)
or, compactly, for y € {0,1}:
Pr(Y;=y|z;)=®(2-y—1)-8'2:;0,0°)

However, in this model 8 and o2 are not separately identified and this can be
easily shown considering a new latent continuous random variable Y;° = ¢-Y;* =
c- (Bx; +€;) = yx; + 1y, with ¢ > 0. In fact, in this case:

Pr(V;=1|z;) =Pr(Y7>0) =& (m;o, (c-a)2)

YEi

T o (~aitey)

—oo
vz; Bx;
- J e (4)() - [ oo ()
oo —oo
=Pr (Y >0)

To avoid this problem o2 is customarily set at the arbitrarily value of 1, and 8
is evaluated under this condition.

A multivariate extension. The latent regression approach can be generalized
to two or more binary decisions.? Dropping the i subscript for notational ease,
we can suppose that every decision j can be expressed as a function of a latent
continuous regression:

}/}*:ﬂ;x+5j:1;j+5j, i=1l.,n
Y5 = Lo}

19This happens in most cases. However, suppose a group of individuals in a controlled
trial is observed on a window [0,7]: assuming the DGP to be a Cox (1972) Proportional
Hazards Model, survival probability in 7" is the c.d.f. of an Extreme Value Type I or Gumbel
distribution. Clearly, it is a skewed distribution.

20The first attempt in this direction is due to Ashford and Sowden (1970); several papers
have followed this one, expanding the subject and proposing estimation metods different
from maximum likelihood. We refer to Amemiya (1981) for a survey of multivariate binary
regression models.
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or, in compact vectorial form:

Y*=Bzx+e=v+e¢

Y = (1)

where Y*, Y, v and € are (n x 1) vectors of elements Y Y;, Bjx and €;, whereas
B =[p1,---,Bn]'- Notice that no loss of generality is involved in assuming that
the same vector z enters all equations, since some of the coefficients in B may
be zero.

The probability of Y; can be easily calculated by adapting the results of the
previous section:

Pr(Y;=y;|2)=®(2-y; - 1) Bz;0,0°)

i.e., the marginal distribution of Y; is a simple univariate probit model; this
result can be very useful in applications, since it shows that the distribution of
Y; depends only on the parameters of the corresponding latent regression Y.

However, in this case, it is more interesting to express the probability of a
vector ¥ = [y1,...,Yn) Whose elements are only 0’s or 1’s; in order to do so,
define the diagonal matrix D,

D, =2 -diag(y) — I,
Then the probability of y is

Pr(Y =y|z)=Pr(D,(Bz+¢)>0)
=Pr(DyBz 4+ Dye > 0)
=Pr(-Dye < D,Bxz)

Now suppose that ¢ is a random Gaussian vector, so that
e~ N(0,%)
Then —De¢ is itself a random Gaussian vector
—Dye ~ N (0, DyED;)
and the probability of observing y is:
Pr(Y =y|z) =%, (DyBz;0,D,XD,)

This formula allows to express the probability of ¢ in compact form, involving
only an n-dimensional integral parameterized as a function of y. Here, DyED;
is a positive definite matrix: in fact, consider dy, a column vector equal to the
main diagonal of D,; then, by Equation (2.11) in Styan (1973)

D,=D!) = (dyd,) *
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where * is the Hadamard product. But X and (dyd;) are both positive definite,
and so is their Hadamard product (see Theorem 3.1 in Styan (1973)).
Alternatively, we can write the probabilities Pr(Y =y | z) as

Pr(Y =y|z)=Pr(D,(Bz+¢)>0)
=Pr(DyBz 4+ Dye > 0)

where D, Bx + D¢ is a random Gaussian vector
DyBz + Dye ~ N (DyBz,D,%D,)
Then the probability of observing y is:

Pr(Y =y|z) =Pr(DyBz + Dy > 0)

+oo
= / ¢n (DyBz, DyD,) ds

s=0

B /Rn Lisern} - ¢n (DyBe, DyBD,) d

=B (Lens})

where R? is the non-negative orthant of the n-dimensional Euclidean space.

Similar to the univariate case, it is simple to show that this model suffers
from an identification problem, insofar as B and X cannot be recovered unam-
biguously. As in the univariate case, the problem is solved by standardizing,
which in the multivariate setting amounts at replacing the variance covariance
matrix ¥ with the correlation matrix R.

B Variables of the Application

This Appendix simply reports the variables used in the application of Section
6. For every year and every variable, we have reproduced the field of the PSID
database corresponding to the couple: as an example V30020 is the field corre-
sponding to the variable INTERVIEW in 1969. In parentheses, the selection rule
we applied is reported: since for V30020 a recorded value of 0 corresponds to
a missing value, we have selected only the individuals having a recorded value
V30020 greater than Q.
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YEAR INTERVIEW | PERSON RELATIONSHIP AGE OF MARRIED PATRS
NUMBER TO HEAD INDIVIDUAL INDICATOR
1968 V30001 V30002 V30003 (>0,<9) | V30004 (>0,<99) V30005
1969 V30020 (>0) V30022 (>0) V30023 (>0,<99) V30024
1970 V30043 (>0) V30045 (>0) V30046 (>0,<99) V30047
1971 V30067 (>0) V30069 (>0) V30070 (>0,<99) V30071
1972 V30091 (>0) V30093 (>0) V30094 (>0,<99) V30095
1973 V30117 (>0) V30119 (>0) V30120 (>0,<99) V30121
1974 V30138 (>0) V30140 (>0) V30141 (>0,<99) V30142
1975 V30160 (>0) V30162 (>0) V30163 (>0,<99) V30164
1976 V30188 (>0) V30190 (>0) V30191 (>0,<99) V30192
1977 V30217 (>0) V30219 (>0) V30220 (>0,<99) V30221
1978 V30246 (>0) V30248 (>0) V30249 (>0,<99) V30250
1979 V30283 (>0) V30285 (>0) V30286 (>0,<99) V30287
1980 V30313 (>0) V30315 (>0) V30316 (>0,<99) V30317
1981 V30343 (>0) V30345 (>0) V30346 (>0,<99) V30347
1982 V30373 (>0) V30375 (>0) V30376 (>0,<99) V30377
1983 V30399 (>0) V30401 (>0) V30402 (>0,<99) V30405
1984 V30429 (>0) V30341 (>0) V30342 (>0,<99) V30345
1985 V30463 (>0) V30465 (>0) V30466 (>0,<99) V30469
1986 V30498 (>0) V30500 (>0) V30501 (>0,<99) V30504
1987 V30535 (>0) V30537 (>0) V30538 (>0,<99) V30541
1988 V30570 (>0) V30572 (>0) V30573 (>0,<99) V30576
1989 V30606 (>0) V30608 (>0) V30609 (>0,<99) V30612
1990 V30642 (>0) V30644 (>0) V30645 (>0,<99) V30648
1991 V30689 (>0) V30691 (>0) V30692 (>0,<99) V30695
1992 V30733 (>0) V30735 (>0) V30736 (>0,<99) V30739
1993 V30806 (>0) V30808 (>0) V30809 (>0,<99) V30812
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YEAR YEARS OF SCHOOL | HIGHEST GRADE | COMPLETED HOURS TYPE OF
COMPLETED COMPLETED EDUCATION WORKED INCOME

1968 V30010 (<99) V30013 (<9999) | V30011 (<9)
1969 V30034 (<9998) | V30032 (<9)
1970 V30052 (<99) V30058 (<9999) | V30056 (<9)
1971 V30076 (<99) V30082 (<9999) | V30080 (<9)
1972 V30100 (<99) V30110 (<99) | V30107 (<9999) | V30105 (<9)
1973 V30126 (<99) V0131 (<9999) V30129 (<9)
1974 V30147 (<99) V30153 (<7800) | V30150 (<9)
1975 V30169 (<99) V30181 (<51) | V30177 (<6074)

1976 V30197 (<99) V30204 (<6800)

1977 V30226 (<99) V30233 (<6000)

1978 V30255 (<99) V30270 (<7280)

1979 V30206 (<99) V30300 (<9999)

1980 V30326 (<99) V30330

1981 V30356 (<99) V30360

1982 V30384 (<99) V30388

1983 V30413 (<99) V30417

1984 V30443 (<99) V30447

1985 V30478 (<99) V30482

1986 V30513 (<99) V30517

1987 V30549 (<99) V30553

1988 V30584 (<99) V30588

1989 V30620 (<99) V30624

1990 V30657 (<99) V30661

1991 V30703 (<99) V30709

1992 V30748 (<99) V30754

1993 V30820 (<99) V30823
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YEAR TYPE OF TYPE OF TAXABLE MONEY TAXABLE
INCOME INCOME INCOME INCOME

1968 V30011 (<9) V30012 (<9999)

1969 V30032 (<9) V30033 (<99999)

1970 V30056 (<9) V30057 (<99999)

1971 V30080 (<9) V30081 (<99999)

1972 V30105 (<9) V30106 (<99999)

1973 V30129 (<9) V30130 (<99999)

1974 V30150 (<9) V30152 (<99999)

1975 V30171 V30173 (>-9999,<99999)

1976 V30201 V30202 (>-9999,<99999)

1977 V30230 V30231 (>-9999,<99999)

1978 V30267 V30268 (>-9999,<99999)

1979 V30297 V30298 (>-9999,<99999)

1980 V30327 V30328 (>-9999,<99999)

1981 V30357 V30358 (>-9999,<99999)

1982 V30385 V30386 (>-9999,<99999)

1983 V30414 V30415 (>-99999,<999999)

1984 V30444 V30445 (>-99999,<999999)

1985 V30479 V30480 (>-99999,<999999)

1986 V30514 V30515 (>-99999,<999999)

1987 V30550 V30551 (>-99999,<999999)

1988 V30585 V30586 (>-99999,<999999)

1989 V30621 V30622 (>-99999,<999999)

1990 V30658 V30659 (>-99999,<999999)

1991 V30704

1992 V30749

1993
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YEAR TRANSFER LABOR ASSET
INCOME INCOME INCOME

1968

1969

1970

1971

1972

1973

1974

1975 V30175 (<99999)

1976 V30209 (<99999)

1977 V30238 (<99999)

1978 V30275 (<99999)

1979 V30305 (<99999)

1980 V30335 (<99999)

1981 V30365 (<99999)

1982 V30391 (<99999)

1983 V30420 (<99999)

1984 V30455 (<99999)

1985 V30490 (<99999)

1986 V30525 (<99999)

1987 V30561 (<99999)

1988 V30596 (<99999)

1989 V30632 (<99999)

1990 V30669 (<99999)

1991 V30717 (<99999) V30705 (<999999) V30707 (>-99999,<999999)

1992 V30762 (<99999) V30750 (<999999) V30752 (>-99999,<999999)

1993 V30825 (<999999) V30821 (<999999) V30822 (>-99999,<999999)

C Results of the Analysis

In this Appendix we report the maximum likelihood estimates of the models

proposed in Section 6.

35




C.1 One Lag Unsaturated Model with No Simultaneous

Dependence
Usable Observations 6805 Degrees of Freedom 6787
Function Value -2098.7815
Variable Coeff. Std Error | T-Stat Signif.
Children bearing equation
1 CONST -3.9287607 0.41655370 -0.4315827 | 4.0394717e-21
2 Y11 -0.32050908 | 0.21250474 -1.5082444 0.13149199
3 Y21 0.54406852 | 0.064495085 8.4358137 3.2890629¢-17
4 Y1.1%Y2.1 -0.34575150 | 0.24271859 -1.4244954 0.15430313
5 AGE 0.23158938 | 0.032769702 7.0671799 1.5811396e-12
6 AGESQ -0.53712013 | 0.059146188 | -9.0812299 | 1.0735483-19
7 INCOME 0.63728419 0.58817630 1.0834918 0.27859020
8 HOURS -8.8763739 3.6303022 -2.4450786 0.014482060
9 EDU 0.015035067 | 0.0078050051 | 1.9263366 0.054062361
Marriage equation

1 CONST -2.4620387 0.42361628 -5.8119549 | 6.1747486-09
2 Y11 -0.16410528 | 0.19331724 | -0.84889108 0.39594190
3 Y21 3.3146366 0.072020815 46.023315 | 4.4501477¢-308
4 Y1.1%Y2.1 -0.031148739 | 0.24185658 | -0.12879013 0.89752372
5 AGE 0.037612061 | 0.032169351 1.1691893 0.24232737
6 AGESQ -0.11340404 | 0.057506010 | -1.9720380 0.048605268
7 INCOME -0.046565355 | 0.63036349 | -0.073870640 0.94111332
8 HOURS 1.2291636 3.8531471 0.31900252 0.74972460
9 EDU 0.081639921 | 0.0093039187 | 8.7747888 1.7122495e-18
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C.2 Two Lag Unsaturated Model with No Simultaneous

Dependence
Usable Observations 6805 Degrees of Freedom 6781
Function Value -2085.8111
Variable Coeff. Std Error | T-Stat Signif.
Children bearing equation
1 CONST -3.9008416 0.42869897 -9.0992559 | 9.0952825¢-20
2 Y11 -0.31333696 | 0.21574547 -1.4523455 0.14640557
3 Y2.1 0.79788606 0.10477661 7.6151159 2.6345506¢-14
4 Y1.1%Y2.1 -0.34135754 | 0.24644282 -1.3851389 0.16600999
5 Y12 0.52122204 0.14298555 3.6452777 0.00026710321
6 Y22 -0.26678643 | 0.10419056 -2.5605624 0.010450290
7 Y1.2%¥Y2.2 -0.50563460 | 0.17084695 -2.9595764 0.0030806227
8 AGE 0.22376862 | 0.033771258 6.6260077 3.4488715e-11
9 AGESQ -0.51696968 | 0.060666119 | -8.5215552 | 1.5742500e-17
10 INCOME 0.62729488 0.58394945 1.0742280 0.28272049
11 HOURS -8.0916553 3.7213930 -2.1743620 0.029677962
12 EDU 0.015170073 | 0.0078334484 | 1.9365766 0.052797124
Marriage equation

1 CONST -2.4851768 0.42749726 -5.8133162 | 6.1247208¢-09
2 Y11 -0.16621892 | 0.19382431 | -0.85757521 0.39112707
3 Y2.1 3.3040134 0.14620983 22.597752 | 4.5600171e-113
4 Y1.1%Y2.1 -0.038842085 | 0.24246218 | -0.16019853 0.87272469
5 Y12 -0.071594182 | 0.19637191 | -0.36458464 0.71542148
6 Y22 0.025019494 | 0.14862745 0.16833697 0.86631819
7 Y1.2%Y2.2 -0.043416742 | 0.24711266 | -0.17569614 0.86053266
8 AGE 0.040037726 | 0.032427876 1.2346700 0.21695335
9 AGESQ -0.11850395 | 0.057914644 | -2.0461829 0.040738380
10 INCOME -0.042200248 | 0.63209053 | -0.066762981 0.94677039
11 HOURS 1.0763038 3.8575362 0.27901328 0.78023464
12 EDU 0.081756990 | 0.0093644551 | 8.7305656 2.5340212¢-18
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C.3 One Lag Saturated Model with No Simultaneous De-

pendence
Usable Observations 6805 Degrees of Freedom | 6757
Function Value -2914.4933
Variable Coeff. Std Err | T-Stat |  Signif.
Children bearing equation

1 CONST -4.8735379 0.65039905 -7.4931504 | 6.7239775e-14
2 AGE 0.31072124 0.053455339 5.8127261 6.1463588¢-09
3 AGESQ -0.65054205 0.10169710 -6.3968592 | 1.5860540e-10
4 INCOME 0.24132310 0.57987937 0.41616085 0.67729230
5 HOURS -14.763850 6.5982369 -2.2375447 0.025250759
6 EDU -0.0018936892 | 0.0093267122 | -0.20303931 0.83910431
7 Yi.1 -10.047147 49.970481 -0.20106165 0.84065037
8 AGE*Y1.1 1.3797660 5.6107123 0.24591636 0.80574698
9 AGESQ*Y1.1 -4.4478974 15.617096 -0.28480951 0.77579009
10 INCOME*Y1_1 8.0161405 47.043394 0.17039885 0.86469647
11 HOURS*Y1_1 -11.391349 122.62530 | -0.092895586 | 0.92598651
12 EDU*Y1.1 -0.031549941 | 0.062175793 | -0.50743126 0.61185226
13 Y2.1 4.2243331 0.97781866 4.3201601 1.5591607e-05
14 AGE*Y2.1 -0.31575156 | 0.074969275 | -4.2117462 | 2.5340418¢-05
15 AGESQ*Y2.1 0.49935018 0.13686845 3.6483951 | 0.00026388356
16 INCOME*Y2_1 1.6468916 2.0430136 0.80610898 0.42018002
17 HOURS*Y2_1 2.6111429 8.9176786 0.29280522 0.76967103
18 EDU*Y2.1 0.076113598 | 0.020455341 3.7209646 | 0.00019846326
19 Y11*Y2.1 11.009568 50.118805 0.21966940 0.82612864
20 AGE*Y1.1%Y2.1 -1.5035929 5.6192869 -0.26757717 0.78902480
21 | AGESQ*Y1.1*Y2.1 4.7953336 15.629250 0.30681790 0.75898198
22 | INCOME*Y11*¥Y21 | -17.775702 51.021053 -0.34839936 0.72754028
23 | HOURS*Y1.1¥Y2_1 23.638582 130.62733 0.18096199 0.85639741
24 EDU*Y1_1*¥Y2.1 -0.030071537 | 0.10695451 | -0.28116192 0.77858621
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Marriage equation

1 CONST -4.3051076 0.55604436 -7.7423815 0.7571725e-15
2 AGE 0.20807817 0.043255330 4.8104633 1.5058088e-06
3 AGESQ -0.50483522 0.079661763 -6.3372338 2.3392682e-10
4 INCOME -0.57009967 0.74761720 -0.76255557 0.44572849
5 HOURS 17.061523 5.4778995 3.1146105 0.0018418798
6 EDU 0.089131232 0.010881296 8.1912332 2.5856309e-16
7 Y11 -3.7828244 12.403857 -0.30497163 0.76038776
8 AGE*Y1.1 0.35047798 1.1361518 0.30847814 0.75771853
9 AGESQ*Y1.1 -0.86860562 2.4639995 -0.35251859 0.72444938
10 INCOME*Y1.1 -0.74514310 41.524962 -0.017944462 0.98568316
11 HOURS*Y1.1 -18.635797 77.077420 -0.24178024 0.80895045
12 EDU*Y1.1 0.021238654 0.22577481 0.094070080 0.92505349
13 Y21 6.7878177 1.3462539 5.0420040 4.6068155e-07
14 AGE*Y2.1 -0.29346610 0.094372375 -3.1096610 0.0018730217
15 AGESQ*Y2.1 0.65689023 0.16220333 4.0497949 5.1262538e-05
16 INCOME*Y2.1 0.80757461 2.4524051 0.32929902 0.74192969
17 HOURS*Y2.1 -20.132226 0.3311771 -3.1220312 0.0017960793
18 EDU*Y2.1 -0.033579455 | 0.026885961 -1.2489587 0.21168018
19 Y1.1*Y2.1 -0.34148454 12.674678 -0.026942265 0.97850578
20 AGE*Y1.1*Y2.1 -0.081892745 1.1516904 -0.071106561 0.94331295
21 AGESQ*Y1.1*Y2.1 0.33553799 2.4862817 0.13495574 0.89264687
22 | INCOME*Y1.1*Y2.1 4.2785058 44.739994 0.095630451 0.92381408
23 HOURS*Y1.1*Y2.1 8.0711418 87.344049 0.092406317 0.92637522
24 EDU*Y1.1*Y2.1 0.046845289 0.23730446 0.19740585 0.84350995
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C.4 One Lag Unsaturated Model

Usable Observations 6805 Degrees of Freedom | 6783
Function Value -2980.7935
Variable Coeff. Std Error | T-Stat |  Signif.
Children bearing equation
1 CONST -3.8710789 0.41740376 -9.2741831 1.7898520e-20
2 Y11 -0.30850117 | 0.26301707 -1.1729321 0.24082303
3 Y2.1 0.56075765 | 0.064121485 8.7452379 2.2254615¢-18
4 Y1.1%Y2.1 -0.35951336 | 0.28759497 -1.2500683 0.21127459
5 AGE 0.22642425 | 0.032884968 6.8853420 5.7648859¢-12
6 AGESQ -0.52605231 | 0.059449243 -8.8487638 8.8494075e-19
7 INCOME 0.68654642 0.58540116 1.1727794 0.24088428
8 HOURS -9.4790776 3.6149914 -2.6221577 0.0087374987
9 EDU 0.014061426 | 0.0078607515 1.7888145 0.073644701
Marriage equation
1 CONST -2.4320292 0.42146893 -5.7703642 7.9100396e-09
2 Y11 -0.16917955 | 0.29296006 -0.57748333 0.56361299
3 Y21 3.3204214 0.071907156 46.176508 4.4501477¢-308
4 Y1.1%Y2.1 -0.027000173 | 0.32669618 | -0.082646125 0.93413292
5 AGE 0.034825314 | 0.032028056 1.0873377 0.27688758
6 AGESQ -0.11019258 | 0.057367692 -1.9208125 0.054755351
7 INCOME 0.021975033 | 0.62818356 0.034981866 0.97209420
8 HOURS 1.4269067 3.8308028 0.37248243 0.70953369
9 EDU 0.082983945 | 0.0092095999 9.0105917 2.0494764e-19
Correlation

1 CONST 0.64444888 0.13631158 4.7277634 2.2700646e-06
2 Y11 -2.1714184 433.67551 | -0.0050070118 0.99600500
3 Y21 -0.38883914 | 0.23845645 -1.6306505 0.10296409
4 Y1.1%Y2.1 1.0259004 433.67734 0.0023655845 0.99811254
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C.5 Two Lag Unsaturated Model

Usable Observations 6805 Degrees of Freedom 6783
Function Value -2962.6891
Variable Coeff. Std Error | T-Stat Signif.
Children bearing equation
1 CONST -3.8604569 0.43182982 -8.9397647 3.8999996¢-19
2 Y11 -0.30198455 0.27413569 -1.1015878 0.27064090
3 Y21 0.81396602 0.10537835 7.7242242 1.1253659¢-14
4 Y1.1%Y2.1 -0.35560938 0.29868616 -1.1905787 0.23381901
5 Y12 0.52778634 0.14157346 3.7280033 0.00019300284
6 Y22 -0.26319774 0.10488934 -2.5092898 0.012097419
7 Y1.2%Y2.2 -0.52096131 0.16986227 -3.0669631 0.0021624558
8 AGE 0.21994753 0.034025508 6.4641954 1.0183923e-10
9 AGESQ -0.50903854 | 0.061128191 -8.3273942 8.2641185e-17
10 INCOME 0.69075523 0.58219222 1.1864728 0.23543564
11 HOURS -8.9174606 3.7135150 -2.4013531 0.016334567
12 EDU 0.014695627 | 0.0078375691 1.8750236 0.060789483
Marriage equation
1 CONST -2.4666318 0.42754514 -5.7692899 7.9606264¢-09
2 Y11 -0.17238381 0.27786527 -0.62038629 0.53500349
3 Y21 3.3176873 0.15029129 22.075047 | 5.4906952¢-108
4 Y1.1%Y2.1 -0.023736809 0.31445704 | -0.075485062 0.93982878
5 Y12 -0.090833587 | 0.19300173 -0.47063614 0.63790060
6 Y22 0.011617392 0.15337995 0.075742575 0.93962390
7 Y1.2%Y2.2 -0.0091351286 | 0.24567103 | -0.037184395 0.97033798
8 AGE 0.037996252 | 0.032418840 1.1720423 0.24118007
9 AGESQ -0.11614342 0.057971474 -2.0034581 0.045128145
10 INCOME 0.040205691 0.63227099 0.063589333 0.94929723
11 HOURS 0.71454148 3.8742702 0.18443253 0.85367415
12 EDU 0.083478473 | 0.0092094117 | 9.0644740 1.2520688e-19
Correlation

1 CONST 0.62253673 0.14633884 4.2540773 2.0991275¢-05
2 Y11 -1.7417061 58.443183 -0.029801698 0.97622520
3 Y21 -1.4421480 0.58435671 -2.4679241 0.013589915
4 Y1.1%Y2.1 0.54487353 58.446087 | 0.0093226692 0.99256169
5 Y12 0.14190050 0.54791224 0.25898399 0.79564760
6 Y22 1.3170857 0.60339931 2.1827763 0.029052290
7 Y1.2%Y2.2 -0.58325856 0.78929053 -0.73896561 0.45992788
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C.6 One Lag Saturated Model

Usable Observations 6805 Degrees of Freedom 6753
Function Value -2894.4002
Variable Coeff. Std Error | T-Stat Signif
Children bearing equation

1 CONST -4.8995224 0.66206553 -7.4003587 | 1.3581707e-13
2 AGE 0.31243338 0.054773479 5.7040996 1.1695964e-08
3 AGESQ -0.65308305 0.10501907 -6.2187089 | 5.0126219¢-10
4 INCOME 0.25935497 0.57931629 0.44769149 0.65437587
5 HOURS -14.755512 6.5331291 -2.2585673 0.023910311
6 EDU -0.0019310214 | 0.0092950440 | -0.20774742 0.83542619
7 Yi.1 -10.378821 58.787881 -0.17654694 0.85986427
8 AGE*Y1.1 1.4146545 6.6005603 0.21432340 0.83029487
9 AGESQ*Y1.1 -4.5376286 18.387923 -0.24677223 0.80508451
10 INCOME*Y1_1 7.8477387 55.510797 0.14137319 0.88757513
11 HOURS*Y1_1 -10.069800 142.09459 | -0.070866881 | 0.94350370
12 EDU*Y1.1 -0.031486580 | 0.074604693 | -0.42204557 0.67299176
13 Y2.1 4.2552770 0.98626230 4.3145490 | 1.5992905¢-05
14 AGE*Y2.1 -0.31757682 | 0.075951888 | -4.1812893 | 2.8986072¢-05
15 AGESQ*Y2.1 0.50206420 0.13940484 3.6014833 | 0.00031640677
16 INCOME*Y2_1 1.6456195 2.0432482 0.80539383 0.42059245
17 HOURS*Y2_1 2.5383113 8.8713416 0.28612486 0.77478249
18 EDU*Y2.1 0.075900742 | 0.020445777 3.7122944 | 0.00020538886
19 Y11*Y2.1 11.402111 58.907510 0.19355955 0.84652078
20 AGE*Y1.1%Y2.1 -1.5472339 6.6074236 -0.23416599 0.81485612
21 | AGESQ*Y1.1*Y2.1 4.8979175 18.397419 0.26622851 0.79006322
22 | INCOME*Y1.1*¥Y21 | -18.132995 58.771818 -0.30853214 0.75767745
23 | HOURS*Y1.1¥Y2_1 24.095482 148.80461 0.16192699 0.87136335
24 EDU*Y1.1*¥Y2.1 -0.024302196 | 0.11818617 | -0.20562639 0.83708276
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Marriage equation

1 CONST -4.3763693 0.55324962 -7.9102978 2.5677386e-15
2 AGE 0.21418401 | 0.043139929 4.9648671 6.8748145e-07
3 AGESQ -0.51795580 | 0.079614934 -6.5057619 7.7300593¢-11
4 INCOME -0.51145351 | 0.74056524 -0.69062586 0.48980069

5 HOURS 17.289871 5.4319801 3.1829777 0.0014576886
6 EDU 0.089312581 | 0.010703995 8.3438546 7.1907376e-17
7 Y11 -3.7919139 14.189318 -0.26723722 0.78928652
8 AGE*Y1.1 0.35270333 1.3112221 0.26898823 0.78793874
9 AGESQ*Y1.1 -0.87365174 2.7940551 -0.31268236 0.75452200
10 INCOME*Y1.1 -0.43636696 42.413562 -0.010288383 0.99179120
11 HOURS*Y1_1 -18.759856 83.030088 -0.22593801 0.82124963
12 EDU*Y1.1 0.019435893 | 0.24358026 0.079792561 0.93640224
13 Y21 6.8288263 1.3384097 5.1021943 3.3573779e-07
14 AGE*Y2.1 -0.29792580 | 0.093888851 -3.1731755 0.0015078134
15 AGESQ*Y2.1 0.66746225 | 0.16147712 4.1334787 3.5731335e-05
16 INCOME*Y2.1 0.74751274 2.4496238 0.30515409 0.76024879
17 HOURS*Y2_1 -29.203653 9.3341623 -3.1286849 0.0017559047
18 EDU*Y2_1 -0.033526863 | 0.026827225 -1.2497328 0.21139718
19 Y1.1*Y21 -0.38054667 14.415970 -0.026397576 0.97894023
20 AGE*Y1.1*¥Y2.1 -0.077200587 | 1.3240386 -0.058306899 0.95350417
21 | AGESQ*Y1.1¥Y2.1 0.32627412 2.8128047 0.11599601 0.90765570
22 | INCOME*Y1.1¥*Y2.1 | 4.3701346 45.419422 0.096217309 0.92334798
23 | HOURS*Y1.1*Y2.1 7.7221368 92.321434 0.083644030 0.93333946
24 EDU*Y1.1¥Y2.1 0.045841159 | 0.25406993 0.18042733 0.85681710

Correlation

1 CONST 0.70090188 | 0.13873026 5.0522640 4.3660371e-07
2 Y11 -3.0617732 58905.697 | -5.1977539¢-05 | 0.99995853
3 Y21 -0.42300825 | 0.25439364 -1.6631636 0.096279688
4 Y1.1*Y21 1.8801661 58905.696 | 3.1918239e-05 0.99997453
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