EconPapers    
Economics at your fingertips  
 

Regime-switching Stochastic Volatility Model: Estimation and Calibration to VIX options

Stéphane Goutte (), Amine Ismail and Huyên Pham ()
Additional contact information
Amine Ismail: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Huyên Pham: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique, CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - ENSAE ParisTech - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: We develop and implement a method for maximum likelihood estimation of a regime-switching stochastic volatility model. Our model uses a continuous time stochastic process for the stock dynamics with the instantaneous variance driven by a Cox-Ingersoll-Ross (CIR) process and each parameter modulated by a hidden Markov chain. We propose an extension of the EM algorithm through the Baum-Welch implementation to estimate our model and filter the hidden state of the Markov chain while using the VIX index to invert the latent volatility state. Using Monte Carlo simulations, we test the convergence of our algorithm and compare it with an approximate likelihood procedure where the volatility state is replaced by the VIX index. We found that our method is more accurate than the approximate procedure. Then, we apply Fourier methods to derive a semi-analytical expression of S&P 500 and VIX option prices, which we calibrate to market data. We show that the model is sufficiently rich to encapsulate important features of the joint dynamics of the stock and the volatility and to consistently fit option market prices.

Keywords: VIX index; Stochastic volatility; EM algorithm; Regime-switching model; Baum-Welch algorithm. (search for similar items in EconPapers)
Date: 2017-05-01
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-ore and nep-rmg
Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-01212018v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3) Track citations by RSS feed

Downloads: (external link)
https://hal.archives-ouvertes.fr/hal-01212018v2/document (application/pdf)

Related works:
Journal Article: Regime-switching stochastic volatility model: estimation and calibration to VIX options (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01212018

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2020-02-18
Handle: RePEc:hal:wpaper:hal-01212018