Economics at your fingertips  

Nonparametric Estimation in case of Endogenous Selection

Christoph Breunig, Enno Mammen and Anna Simoni

No SFB649DP2015-050, SFB 649 Discussion Papers from Humboldt University, Collaborative Research Center 649

Abstract: This paper addresses the problem of estimation of a nonparametric regression function from selectively observed data when selection is endogenous. Our approach relies on independence between covariates and selection conditionally on potential outcomes. Endogeneity of regressors is also allowed for. In both cases, consistent two-step estimation procedures are proposed and their rates of convergence are derived. Also pointwise asymptotic distribution of the estimators is established. In addition, we propose a nonparametric specification test to check the validity of our independence assumption. Finite sample properties are illustrated in a Monte Carlo simulation study and an empirical illustration.

Keywords: Endogenous selection; instrumental variable; sieve minimum distance; regression estimation; convergence rate; asymptotic normality; hypothesis testing; inverse problem (search for similar items in EconPapers)
JEL-codes: C14 C26 (search for similar items in EconPapers)
Pages: 40 pages
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7) Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
Journal Article: Nonparametric estimation in case of endogenous selection (2018) Downloads
Working Paper: Nonparametric Estimation in Case of Endogenous Selection (2017) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in SFB 649 Discussion Papers from Humboldt University, Collaborative Research Center 649 Contact information at EDIRC.
Bibliographic data for series maintained by RDC-Team ().

Page updated 2020-09-18
Handle: RePEc:hum:wpaper:sfb649dp2015-050