Simple Optimal Weighting of Cases and Controls in Case-Control Studies
Rose Sherri and
J. van der Laan Mark
Additional contact information
Rose Sherri: University of California, Berkeley
J. van der Laan Mark: University of California, Berkeley
The International Journal of Biostatistics, 2008, vol. 4, issue 1, 26
Abstract:
Researchers of uncommon diseases are often interested in assessing potential risk factors. Given the low incidence of disease, these studies are frequently case-control in design. Such a design allows a sufficient number of cases to be obtained without extensive sampling and can increase efficiency; however, these case-control samples are then biased since the proportion of cases in the sample is not the same as the population of interest. Methods for analyzing case-control studies have focused on utilizing logistic regression models that provide conditional and not causal estimates of the odds ratio. This article will demonstrate the use of the prevalence probability and case-control weighted targeted maximum likelihood estimation (MLE), as described by van der Laan (2008), in order to obtain causal estimates of the parameters of interest (risk difference, relative risk, and odds ratio). It is meant to be used as a guide for researchers, with step-by-step directions to implement this methodology. We will also present simulation studies that show the improved efficiency of the case-control weighted targeted MLE compared to other techniques.
Keywords: case control sampling; causal effect; counterfactual; double robust estimation; estimating function; inverse probability of treatment weighting; locally efficient estimation; marginal structural models; targeted maximum likelihood estimation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.2202/1557-4679.1115 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:ijbist:v:4:y:2008:i:1:n:19
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/ijb/html
DOI: 10.2202/1557-4679.1115
Access Statistics for this article
The International Journal of Biostatistics is currently edited by Antoine Chambaz, Alan E. Hubbard and Mark J. van der Laan
More articles in The International Journal of Biostatistics from De Gruyter
Bibliographic data for series maintained by Peter Golla ().