A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments
Jiang Hongmei and
Doerge Rebecca W
Additional contact information
Jiang Hongmei: Northwestern University
Doerge Rebecca W: Purdue University
Statistical Applications in Genetics and Molecular Biology, 2006, vol. 5, issue 1, 35
Abstract:
For situations where the number of tested hypotheses is increasingly large, the power to detect statistically significant multiple treatment effects decreases. As is the case with microarray technology, often researchers are interested in identifying differentially expressed genes for more than two types of cells or treatments. A two-step procedure is proposed for the purpose of increasing power to detect significant effects (i.e., to identify differentially expressed genes). Specifically, in the first step, the null hypothesis of equality across the mean expression levels for all treatments is tested for each gene. In the second step, only pairwise comparisons corresponding to the genes for which the treatment means are statistically different in the first step are tested. We propose an approach to estimate the overall FDR for both fixed rejection regions and fixed FDR significance levels. Also proposed is a procedure to find the FDR significance levels used in the first step and the second step such that the overall FDR can be controlled below a pre-specified FDR significance level. When compared via simulation the two-step approach has increased power over a one-step procedure, and controls the FDR at a desire significance level.
Keywords: false discovery rate; multiple comparisons; multiple tests; testing differential expression (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.2202/1544-6115.1223 (text/html)
For access to full text, subscription to the journal or payment for the individual article is required.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bpj:sagmbi:v:5:y:2006:i:1:n:28
Ordering information: This journal article can be ordered from
https://www.degruyter.com/journal/key/sagmb/html
DOI: 10.2202/1544-6115.1223
Access Statistics for this article
Statistical Applications in Genetics and Molecular Biology is currently edited by Michael P. H. Stumpf
More articles in Statistical Applications in Genetics and Molecular Biology from De Gruyter
Bibliographic data for series maintained by Peter Golla ().