Predicting systemic financial crises with recurrent neural networks
Eero Tölö
No 14/2019, Bank of Finland Research Discussion Papers from Bank of Finland
Abstract:
We consider predicting systemic financial crises one to five years ahead using recurrent neural networks. The prediction performance is evaluated with the Jorda-Schularick-Taylor dataset, which includes the crisis dates and relevant macroeconomic series of 17 countries over the period 1870-2016. Previous literature has found simple neural network architectures to be useful in predicting systemic financial crises. We show that such predictions can be greatly improved by making use of recurrent neural network architectures, especially suited for dealing with time series input. The results remain robust after extensive sensitivity analysis.
JEL-codes: C45 C52 G21 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/212448/1/bof-rdp2019-014.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:bofrdp:rdp2019_014
Access Statistics for this paper
More papers in Bank of Finland Research Discussion Papers from Bank of Finland Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().