Time-varying Combinations of Predictive Densities using Nonlinear Filtering
Monica Billio,
Roberto Casarin,
Francesco Ravazzolo and
Herman van Dijk
No 12-118/III, Tinbergen Institute Discussion Papers from Tinbergen Institute
Abstract:
This discussion paper resulted in a publication in the 'Journal of Econometrics', 2013, 177(2), 213-232.
We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven by the past performance of the predictive densities and the use of learning mechanisms. In the proposed approach the model set can be incomplete, meaning that all models can be individually misspecified. A Sequential Monte Carlo method is proposed to approximate the filtering and predictive densities. The combination approach is assessed using statistical and utility-based performance measures for evaluating density forecasts. Simulation results indicate that, for a set of linear autoregressive models, the combination strategy is successful in selecting, with probability close to one, the true model when the model set is complete and it is able to detect parameter instability when the model set includes the true model that has generated subsamples of data. For the macro series we find that incompleteness of the models is relatively large in the 70's, the beginning of the 80's and during the recent financial crisis, and lower during the Great Moderation. With respect to returns of the S&P 500 series, we find that an investment strategy using a combination of predictions from professional forecasters and from a white noise model puts more weight on the white noise model in the beginning of the 90's and switches to giving more weight to the professional forecasts over time.
Keywords: Density Forecast Combination; Survey Forecast; Bayesian Filtering; Sequential Monte Carlo (search for similar items in EconPapers)
JEL-codes: C11 C15 C53 E37 (search for similar items in EconPapers)
Date: 2012-11-07
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://papers.tinbergen.nl/12118.pdf (application/pdf)
Related works:
Journal Article: Time-varying combinations of predictive densities using nonlinear filtering (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tin:wpaper:20120118
Access Statistics for this paper
More papers in Tinbergen Institute Discussion Papers from Tinbergen Institute Contact information at EDIRC.
Bibliographic data for series maintained by Tinbergen Office +31 (0)10-4088900 ().