Single Crossing Lorenz Curves and Inequality Comparisons
Thibault Gajdos ()
Additional contact information
Thibault Gajdos: CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
Since the order generated by the Lorenz criterion is partial, it is a natural question to wonder how to extend this order. Most of the literature that is concerned with that question focuses on local changes in the income distribution. We follow a different approach, and define uniform $\alpha$-spreads, which are global changes in the income distribution. We give necessary and sufficient conditions for an Expected Utility or Rank-Dependent Expected Utility maximizer to respect the principle of transfers and to be favorable to uniform $\alpha$-spreads. Finally, we apply these results to inequality indices.
Keywords: Inequality measures; Intersecting Lorenz Curves; Spreads (search for similar items in EconPapers)
Date: 2004
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00086028v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Mathematical Social Sciences, 2004, 47 (1), pp.21-36. ⟨10.1016/S0165-4896(03)00078-7⟩
Downloads: (external link)
https://shs.hal.science/halshs-00086028v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00086028
DOI: 10.1016/S0165-4896(03)00078-7
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().