EconPapers    
Economics at your fingertips  
 

Discrete Choices under Social Influence: Generic Properties

Mirta Gordon, Jean-Pierre Nadal (), Denis Phan () and Viktoriya Semeshenko
Additional contact information
Jean-Pierre Nadal: CAMS - Centre d'Analyse et de Mathématique sociales - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique, LPS - Laboratoire de Physique Statistique de l'ENS - FRDPENS - Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Viktoriya Semeshenko: TIMC-IMAG - Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Grenoble - UMR 5525 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - VAS - VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: We consider a model of socially interacting individuals that make a binary choice in a context of positive additive endogenous externalities. It encompasses as particular cases several models from the sociology and economics literature. We extend previous results to the case of a general distribution of idiosyncratic preferences, called here Idiosyncratic Willingnesses to Pay (IWP).Positive additive externalities yield a family of inverse demand curves that include the classical downward sloping ones but also new ones with non constant convexity. When $j$, the ratio of the social influene strength to the standard deviation of the IWP distribution, is small enough, the inverse demand is a classical monotonic (decreasing) function of the adoption rate. Even if the IWP distribution is mono-modal, there is a critical value of $j$ above which the inverse demand is non monotonic, decreasing for small and high adoption rates, but increasing within some intermediate range. Depending on the price there are thus either one or two equilibria.Beyond this first result, we exhibit the {\em generic} properties of the boundaries limiting the regions where the system presents different types of equilibria (unique or multiple). These properties are shown to depend {\em only} on qualitative features of the IWP distribution: modality (number of maxima), smoothness and type of support (compact or infinite).The main results are summarized as {\em phase diagrams} in the space of the model parameters, on which the regions of multiple equilibria are precisely delimited.

Keywords: social influence; externalities; discrete choice; heterogeneous agents; socioeconomic behavior (search for similar items in EconPapers)
Date: 2012-04-26
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00135405v1
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Mathematical Models and Methods in Applied Sciences, 2012, 19 (supp01), pp.1441-1481. ⟨10.1142/S0218202509003887⟩

Downloads: (external link)
https://shs.hal.science/halshs-00135405v1/document (application/pdf)

Related works:
Working Paper: Discrete Choices under Social Influence, Generic Properties (2012)
Working Paper: Discrete Choices under Social Influence:Generic Properties (2006)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00135405

DOI: 10.1142/S0218202509003887

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:halshs-00135405