A structure theorem for graphs with no cycle with a unique chord and its consequences
Nicolas Trotignon () and
Kristina Vuskovic ()
Additional contact information
Nicolas Trotignon: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Kristina Vuskovic: School of Computing [Leeds] - University of Leeds
Post-Print from HAL
Abstract:
We give a structural description of the class C of graphs that do not contain a cycle with a unique chord as an induced subgraph. Our main theorem states that any connected graph in C is a either in some simple basic class or has a decomposition. Basic classes are cliques, bipartite graphs with one side containing only nodes of degree two and induced subgraph of the famous Heawood or Petersen graph. Decompositions are node cutsets consisting of one or two nodes and edge cutsets called 1-joins. Our decomposition theorem actually gives a complete structure theorem for C, i.e. every graph in C can be built from basic graphs that can be explicitly constructed, and gluing them together by prescribed composition operations ; and all graphs built this way are in C. This has several consequences : an O(nm)-time algorithm to decide whether a graph is in C, an O(n+m)-time algorithm that finds a maximum clique of any graph in C and an O(nm)-time coloring algorithm for graphs in C. We prove that every graph in C is either 3-colorable or has a coloring with ω colors where ω is the size of a largest clique. The problem of finding a maximum stable set for a graph in C is known to be NP-hard.
Keywords: Cycle with a unique chord; decomposition; structure; detection; recognition; Heawood graph; Petersen graph; coloring.; coloring; Cycle avec une seule corde; détection reconnaissance; graphe de Heawood; graphes de Petersen; coloration. (search for similar items in EconPapers)
Date: 2008-03
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00265957
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in 2008
Downloads: (external link)
https://shs.hal.science/halshs-00265957/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00265957
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().