Business surveys modelling with Seasonal-Cyclical Long Memory models
Laurent Ferrara () and
Dominique Guegan ()
Additional contact information
Laurent Ferrara: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, DGEI-DAMEP - Banque de France
Dominique Guegan: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
Business surveys are an important element in the analysis of the short-term economic situation because of the timeliness and nature of the information they convey. Especially, surveys are often involved in econometric models in order to provide an early assessment of the current state of the economy, which is of great interest for policy-makers. In this paper, we focus on non-seasonally adjusted business surveys released by the European Commission. We introduce an innovative way for modelling those series taking the persistence of the seasonal roots into account through seasonal-cyclical long memory models. We empirically prove that such models produce more accurate forecasts than classical seasonal linear models.
Keywords: Euro area; nowcasting; business surveys; seasonal; long memory.; long memory; Enquêtes; saisonnalité; longue mémoire; prévision en temps réel. (search for similar items in EconPapers)
Date: 2008-05
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00277379v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Published in 2008
Downloads: (external link)
https://shs.hal.science/halshs-00277379v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00277379
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().