EconPapers    
Economics at your fingertips  
 

Nonparametric Estimation of the Fractional Derivative of a Distribution Function

Andreea Borla () and Costin Protopopescu ()
Additional contact information
Andreea Borla: GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique
Costin Protopopescu: GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: We propose an estimator for the fractional derivative of a distribution function. Our estimator, based on finite differences of the empirical distribution function generalizes the estimator proposed by Maltz for the nonnegative real case. The asymptotic bias, variance and the consistency of the estimator are studied. Finally, the optimal choice for the ''smoothing parameter'' proves that even in the fractional case, the Stone's rate of convergence is achieved.

Keywords: fractional derivative; nonparametric estimation; distribution function; generalized differences (search for similar items in EconPapers)
Date: 2010
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00536979
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://shs.hal.science/halshs-00536979/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:halshs-00536979

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:halshs-00536979