Nonparametric risk management with generalized hyperbolic distributions
Ying Chen,
Wolfgang Härdle and
Seok-Oh Jeong
No 2005-001, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
In this paper we propose the GHADA risk management model that is based on the generalized hyperbolic (GH) distribution and on a nonparametric adaptive methodology. Compared to the normal distribution, the GH distribution possesses semi-heavy tails and represents the financial risk factors more appropriately. The nonparametric adaptive methodology has the desirable property of estimating homogeneous volatility in a short time interval. For DEM/USD exchange rate data and a German bank portfolio data the proposed GHADA model provides more accurate value at risk calculation than the traditional model based on the normal distribution. All calculations and simulations are done with XploRe.
Keywords: adaptive volatility estimation; generalized hyperbolic distribution; value at risk; risk management. (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25020/1/495968188.PDF (application/pdf)
Related works:
Journal Article: Nonparametric Risk Management With Generalized Hyperbolic Distributions (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2005-001
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().