Barrier option hedging under constraints: A viscosity approach
Imen Bentahar and
Bruno Bouchard
No 2006-022, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
We study the problem of finding the minimal initial capital needed in order to hedge without risk a barrier option when the vector of proportions of wealth invested in each risky asset is constraint to lie in a closed convex domain. In the context of a Brownian diffusion model, we provide a PDE characterization of the super-hedging price. This extends the result of Broadie, Cvitanic and Soner (1998) and Cvitanic, Pham and Touzi (1999) which was obtained for plain vanilla options, and provides a natural numerical procedure for computing the corresponding super-hedging price. As a by-product, we obtain a comparison theorem for a class of parabolic PDE with relaxed Dirichet conditions involving a constraint on the gradient.
Keywords: Super-replication; barrier options; portfolio constraints; viscosity solutions (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25105/1/51246961X.PDF (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2006-022
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().