Testing directional forecast value in the presence of serial correlation
Oliver J. Blaskowitz and
Helmut Herwartz
No 2008-073, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
Common approaches to test for the economic value of directional forecasts are based on the classical Chi-square test for independence, Fisher’s exact test or the Pesaran and Timmerman (1992) test for market timing. These tests are asymptotically valid for serially independent observations. Yet, in the presence of serial correlation they are markedly oversized as confirmed in a simulation study. We summarize serial correlation robust test procedures and propose a bootstrap approach. By means of a Monte Carlo study we illustrate the relative merits of the latter. Two empirical applications demonstrate the relevance to account for serial correlation in economic time series when testing for the value of directional forecasts.
Keywords: Directional forecasts; directional accuracy; forecast evaluation; testing independence; contingency tables; bootstrap (search for similar items in EconPapers)
JEL-codes: C32 C52 C53 E17 E27 E47 F17 F37 F47 G11 G17 (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25316/1/590227114.PDF (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2008-073
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().