Parametric estimation of risk neutral density functions
Maria Grith and
Volker Krätschmer
No 2010-045, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
This chapter deals with the estimation of risk neutral distributions for pricing index options resulting from the hypothesis of the risk neutral valuation principle. After justifying this hypothesis, we shall focus on parametric estimation methods for the risk neutral density functions determining the risk neutral distributions. We we shall differentiate between the direct and the indirect way. Following the direct way, parameter vectors are estimated which characterize the distributions from selected statistical families to model the risk neutral distributions. The idea of the indirect approach is to calibrate characteristic parameter vectors for stochastic models of the asset price processes, and then to extract the risk neutral density function via Fourier methods. For every of the reviewed methods the calculation of option prices under hypothetically true risk neutral distributions is a building block. We shall give explicit formula for call and put prices w.r.t. reviewed parametric statistical families used for direct estimation. Additionally, we shall introduce the Fast Fourier Transform method of call option pricing developed in [6]. It is intended to compare the reviewed estimation methods empirically.
Keywords: risk neutral valuation principle; risk neutral distribution; logprice risk neutral distribution; risk neutral density function; Black Scholes formula; Fast Fourier Transform method; log-normal distributions; mixtures of log-normal distributions; generalized gamma distributions; model calibration; Merton's jump diffusion model; Heston's volatility model (search for similar items in EconPapers)
JEL-codes: C13 C16 G12 G13 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/56744/1/637059077.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2010-045
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().