Estimation of the signal subspace without estimation of the inverse covariance matrix
Vladimir Panov
No 2010-050, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
Let a high-dimensional random vector X can be represented as a sum of two components - a signal S , which belongs to some low-dimensional subspace S, and a noise component N . This paper presents a new approach for estimating the subspace S based on the ideas of the Non-Gaussian Component Analysis. Our approach avoids the technical difficulties that usually exist in similar methods - it doesn't require neither the estimation of the inverse covariance matrix of X nor the estimation of the covariance matrix of N.
Keywords: dimension reduction; non-Gaussian components; NGCA (search for similar items in EconPapers)
JEL-codes: C13 C14 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/56723/1/637061039.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2010-050
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().