Nonparametric regression with nonparametrically generated covariates
Enno Mammen,
Christoph Rothe and
Melanie Schienle
No 2010-059, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
We analyze the properties of non- and semiparametric estimation procedures involving nonparametric regression with generated covariates. Such estimators appear in numerous econometric applications, including nonparametric estimation of simultaneous equation models, sample selection models, treatment effect models, and censored regression models, but so far there seems to be no unified theory to establish their statistical properties. Our paper provides such results, allowing to establish asymptotic properties like rates of consistency or asymptotic normality for a wide range of semi- and nonparametric estimators. We also show how to account for the presence of nonparametrically generated regressors when computing standard errors.
Keywords: empirical process; propensity score; control variable methods; semiparametric estimation (search for similar items in EconPapers)
JEL-codes: C14 C31 (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/56748/1/64164938X.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2010-059
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics (econstor@zbw-workspace.eu).