Oracally efficient two-step estimation of generalized additive model
Rong Liu,
Lijian Yang and
Wolfgang Härdle
No 2011-016, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
Generalized additive models (GAM) are multivariate nonparametric regressions for non-Gaussian responses including binary and count data. We propose a spline-backfitted kernel (SBK) estimator for the component functions. Our results are for weakly dependent data and we prove oracle efficiency. The SBK techniques is both computational expedient and theoretically reliable, thus usable for analyzing high-dimensional time series. Inference can be made on component functions based on asymptotic normality. Simulation evidence strongly corroborates with the asymptotic theory.
Keywords: bandwidths; B spline; knots; link function; mixing; Nadaraya-Watson estimator (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/56626/1/654791902.pdf (application/pdf)
Related works:
Journal Article: Oracally Efficient Two-Step Estimation of Generalized Additive Model (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2011-016
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().