Nonparametric adaptive estimation of linear functionals for low frequency observed Lévy processes
Johanna Kappus
No 2012-016, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
For a Lévy process X having finite variation on compact sets and finite first moments, u (dx) = xv (dx) is a finite signed measure which completely describes the jump dynamics. We construct kernel estimators for linear functionals of u and provide rates of convergence under regularity assumptions. Moreover, we consider adaptive estimation via model selection and propose a new strategy for the data driven choice of the smoothing parameter.
Keywords: statistics of stochastic processes; low frequency observed Lévy processes; nonparametric statistics; adaptive estimation; model selection with unknown variance (search for similar items in EconPapers)
JEL-codes: C14 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/56711/1/68553586X.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2012-016
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().