EconPapers    
Economics at your fingertips  
 

Adaptive pointwise estimation in time-inhomogeneous conditional heteroscedasticity models

P. Čížek, Wolfgang Härdle () and V. Spokoiny

Econometrics Journal, 2009, vol. 12, issue 2, pages 248-271

Abstract: This paper offers a new method for estimation and forecasting of the volatility of financial time series when the stationarity assumption is violated. Our general, local parametric approach particularly applies to general varying-coefficient parametric models, such as GARCH, whose coefficients may arbitrarily vary with time. Global parametric, smooth transition and change-point models are special cases. The method is based on an adaptive pointwise selection of the largest interval of homogeneity with a given right-end point by a local change-point analysis. We construct locally adaptive estimates that can perform this task and investigate them both from the theoretical point of view and by Monte Carlo simulations. In the particular case of GARCH estimation, the proposed method is applied to stock-index series and is shown to outperform the standard parametric GARCH model. Copyright © 2009 The Author(s). Journal compilation © Royal Economic Society 2009

Date: 2009
References: Add references at CitEc
Citations View citations in EconPapers (13) Track citations by RSS feed

Downloads: (external link)
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1368-423X.2009.00292.x link to full text (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: http://EconPapers.repec.org/RePEc:ect:emjrnl:v:12:y:2009:i:2:p:248-271

Ordering information: This journal article can be ordered from
http://www.ectj.org

Access Statistics for this article

Econometrics Journal is currently edited by Richard J. Smith, Oliver Linton, Pierre Perron, Jaap Abbring and Marius Ooms

More articles in Econometrics Journal from Royal Economic Society Contact information at EDIRC.
Series data maintained by Wiley-Blackwell Digital Licensing ().

 
Page updated 2017-03-26
Handle: RePEc:ect:emjrnl:v:12:y:2009:i:2:p:248-271