A new existence result for quadratic BSDEs with jumps with application to the utility maximization problem
Marie-Amelie Morlais
Stochastic Processes and their Applications, 2010, vol. 120, issue 10, 1966-1995
Abstract:
In this study, we consider the exponential utility maximization problem in the context of a jump-diffusion model. To solve this problem, we rely on the dynamic programming principle to express the value process of this problem in terms of the solution of a quadratic BSDE with jumps. Since the quadratic BSDE1 under study is driven by both a Wiener process and a Poisson random measure having a Lévy measure with infinite mass, our main task is therefore to establish a new existence result for the specific BSDE introduced.
Keywords: Backward; stochastic; differential; equations; Lévy; measure; Utility; maximization; Dynamic; programming; principle (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00134-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:spapps:v:120:y:2010:i:10:p:1966-1995
Ordering information: This journal article can be ordered from
http://http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Stochastic Processes and their Applications is currently edited by T. Mikosch
More articles in Stochastic Processes and their Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().