Can forecasting performance be improved by considering the steady state? An application to Swedish inflation and interest rate
Pär Österholm
Journal of Forecasting, 2008, vol. 27, issue 1, 41-51
Abstract:
This paper investigates whether the forecasting performance of Bayesian autoregressive and vector autoregressive models can be improved by incorporating prior beliefs on the steady state of the time series in the system. Traditional methodology is compared to the new framework-in which a mean-adjusted form of the models is employed-by estimating the models on Swedish inflation and interest rate data from 1980 to 2004. Results show that the out-of-sample forecasting ability of the models is practically unchanged for inflation but significantly improved for the interest rate when informative prior distributions on the steady state are provided. The findings in this paper imply that this new methodology could be useful since it allows us to sharpen our forecasts in the presence of potential pitfalls such as near unit root processes and structural breaks, in particular when relying on small samples. Copyright © 2008 John Wiley & Sons, Ltd.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1041 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:27:y:2008:i:1:p:41-51
DOI: 10.1002/for.1041
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().