Forecasting tender price index under incomplete information
P H K Ho
Additional contact information
P H K Ho: City University of Hong Kong, Kowloon, Hong Kong
Journal of the Operational Research Society, 2013, vol. 64, issue 8, 1248-1257
Abstract:
Tender price index (TPI) is essential for estimating the likely tender price of a given project. Due to incomplete information on future market conditions, it is difficult to accurately forecast the TPI. Most traditional statistical forecasting models require a certain number of historical data, which may not be completely available in many practical situations. In order to overcome this problem, the grey model is proposed for forecasting TPIs because it only requires a small number of input data. For this study, the data source was based on the TPIs produced by the Government's Architectural Services Department. On the basis of four input data, the grey model forecasted TPIs from 1981Q1 to 2011Q4. The mean absolute percentage errors of forecast TPIs in one quarter and two quarters ahead were 3.62 and 7.04%, respectively. In order to assess the accuracy and reliability of the grey model further, the same research method was used to forecast other three TPIs in Hong Kong. The forecasting results of all four TPIs were found to be very good. It was thus concluded that the grey model could be able to produce accurate TPI forecasts for a one-quarter to two-quarter forecast horizon.
Date: 2013
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.palgrave-journals.com/jors/journal/v64/n8/pdf/jors2012168a.pdf Link to full text PDF (application/pdf)
http://www.palgrave-journals.com/jors/journal/v64/n8/full/jors2012168a.html Link to full text HTML (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pal:jorsoc:v:64:y:2013:i:8:p:1248-1257
Ordering information: This journal article can be ordered from
http://www.springer. ... search/journal/41274
Access Statistics for this article
Journal of the Operational Research Society is currently edited by Tom Archibald and Jonathan Crook
More articles in Journal of the Operational Research Society from Palgrave Macmillan, The OR Society
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().