A Family of Maximum Entropy Densities Matching Call Option Prices
Cassio Neri and
Lorenz Schneider
Papers from arXiv.org
Abstract:
We investigate the position of the Buchen-Kelly density in a family of entropy maximising densities which all match European call option prices for a given maturity observed in the market. Using the Legendre transform which links the entropy function and the cumulant generating function, we show that it is both the unique continuous density in this family and the one with the greatest entropy. We present a fast root-finding algorithm that can be used to calculate the Buchen-Kelly density, and give upper boundaries for three different discrepancies that can be used as convergence criteria. Given the call prices, arbitrage-free digital prices at the same strikes can only move within upper and lower boundaries given by left and right call spreads. As the number of call prices increases, these bounds become tighter, and we give two examples where the densities converge to the Buchen-Kelly density in the sense of relative entropy when we use centered call spreads as proxies for digital prices. As pointed out by Breeden and Litzenberger, in the limit a continuous set of call prices completely determines the density.
Date: 2011-02
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/1102.0224 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1102.0224
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().